Cargando…

Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis

BACKGROUND: Culture of Mycobacterium tuberculosis is the gold standard method for the laboratory diagnosis of pulmonary tuberculosis, after effective decontamination. RESULTS: We evaluated squalamine and chlorhexidine to decontaminate sputum specimens for the culture of mycobacteria. Eight sputum sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Asmar, Shady, Drancourt, Michel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524104/
https://www.ncbi.nlm.nih.gov/pubmed/26238865
http://dx.doi.org/10.1186/s12866-015-0479-4
_version_ 1782384159305498624
author Asmar, Shady
Drancourt, Michel
author_facet Asmar, Shady
Drancourt, Michel
author_sort Asmar, Shady
collection PubMed
description BACKGROUND: Culture of Mycobacterium tuberculosis is the gold standard method for the laboratory diagnosis of pulmonary tuberculosis, after effective decontamination. RESULTS: We evaluated squalamine and chlorhexidine to decontaminate sputum specimens for the culture of mycobacteria. Eight sputum specimens were artificially infected with 10(5) colony-forming units (cfu)/mL Mycobacterium tuberculosis and Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans as contaminants. In the second step, we tested chlorhexidine-based decontamination on 191 clinical specimens, (Chlorhexidine, 0.1, 0.5 and 0.7 %). In a last step, growth of contaminants and mycobacteria was measured in 75 consecutive sputum specimens using the routine NALC-NaOH decontamination protocol or with 0.7 % chlorhexidine decontamination and an inoculation on Coletsos medium. In the artificially model, contaminants grew in 100 % of the artificially infected sputum specimens decontaminated using 100 mg/mL squalamine, in 62.5 % of specimens decontaminated using N-Acetyl-L-Cysteine-Sodium Hydroxide (NALC-NaOH), and in 0 % of specimens decontaminated using 0.1 %, 0.35 %, or 1 % chlorhexidine (P < 0.05). These specimens yielded <10(2) cfu M. tuberculosis using NALC-NaOH and > 1.4.10(2) cfu M. tuberculosis when any concentration of chlorhexidine was used (P < 0.05). In the second step we found that 0.7 %-chlorhexidine yielded 0 % contamination rate, 3.2 % for 0.5 %-chlorhexidine and 28.3 % for 0.1 %-chlorhexidine. As for the 75 specimens treated in parallel by both methods we found that when using the standard NALC-NaOH decontamination method, 8/75 (10.7 %) specimens yielded M. tuberculosis colonies with a time to detection of 17.5 ± 3 days and an 8 % contamination rate. Additionally, 14 specimens yielded mycobacteria colonies (12 M. tuberculosis, and 2 Mycobacterium bolletii) (18.7 %) (P = 0.25), which has yielded a 100 % sensitivity for the chlorhexidine protocol. Time to detection was of 15.86 ± 4.7 days (P = 0.39) and a 0 % contamination rate (P < 0.05) using the 0.7 %-chlorhexidine protocol. CONCLUSION: In our work we showed for the first time that chlorhexidine based decontamination is superior to the standard NALC-NaOH method in the isolation of M. tuberculosis from sputum specimens. We currently use 0.7 %-chlorhexidine for the routine decontamination of sputum specimens for the isolation of M. tuberculosis and non-tuberculosis mycobacteria on egg-lecithin containing media.
format Online
Article
Text
id pubmed-4524104
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-45241042015-08-05 Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis Asmar, Shady Drancourt, Michel BMC Microbiol Research Article BACKGROUND: Culture of Mycobacterium tuberculosis is the gold standard method for the laboratory diagnosis of pulmonary tuberculosis, after effective decontamination. RESULTS: We evaluated squalamine and chlorhexidine to decontaminate sputum specimens for the culture of mycobacteria. Eight sputum specimens were artificially infected with 10(5) colony-forming units (cfu)/mL Mycobacterium tuberculosis and Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans as contaminants. In the second step, we tested chlorhexidine-based decontamination on 191 clinical specimens, (Chlorhexidine, 0.1, 0.5 and 0.7 %). In a last step, growth of contaminants and mycobacteria was measured in 75 consecutive sputum specimens using the routine NALC-NaOH decontamination protocol or with 0.7 % chlorhexidine decontamination and an inoculation on Coletsos medium. In the artificially model, contaminants grew in 100 % of the artificially infected sputum specimens decontaminated using 100 mg/mL squalamine, in 62.5 % of specimens decontaminated using N-Acetyl-L-Cysteine-Sodium Hydroxide (NALC-NaOH), and in 0 % of specimens decontaminated using 0.1 %, 0.35 %, or 1 % chlorhexidine (P < 0.05). These specimens yielded <10(2) cfu M. tuberculosis using NALC-NaOH and > 1.4.10(2) cfu M. tuberculosis when any concentration of chlorhexidine was used (P < 0.05). In the second step we found that 0.7 %-chlorhexidine yielded 0 % contamination rate, 3.2 % for 0.5 %-chlorhexidine and 28.3 % for 0.1 %-chlorhexidine. As for the 75 specimens treated in parallel by both methods we found that when using the standard NALC-NaOH decontamination method, 8/75 (10.7 %) specimens yielded M. tuberculosis colonies with a time to detection of 17.5 ± 3 days and an 8 % contamination rate. Additionally, 14 specimens yielded mycobacteria colonies (12 M. tuberculosis, and 2 Mycobacterium bolletii) (18.7 %) (P = 0.25), which has yielded a 100 % sensitivity for the chlorhexidine protocol. Time to detection was of 15.86 ± 4.7 days (P = 0.39) and a 0 % contamination rate (P < 0.05) using the 0.7 %-chlorhexidine protocol. CONCLUSION: In our work we showed for the first time that chlorhexidine based decontamination is superior to the standard NALC-NaOH method in the isolation of M. tuberculosis from sputum specimens. We currently use 0.7 %-chlorhexidine for the routine decontamination of sputum specimens for the isolation of M. tuberculosis and non-tuberculosis mycobacteria on egg-lecithin containing media. BioMed Central 2015-08-05 /pmc/articles/PMC4524104/ /pubmed/26238865 http://dx.doi.org/10.1186/s12866-015-0479-4 Text en © Asmar and Drancourt. 2015 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Asmar, Shady
Drancourt, Michel
Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis
title Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis
title_full Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis
title_fullStr Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis
title_full_unstemmed Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis
title_short Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis
title_sort chlorhexidine decontamination of sputum for culturing mycobacterium tuberculosis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524104/
https://www.ncbi.nlm.nih.gov/pubmed/26238865
http://dx.doi.org/10.1186/s12866-015-0479-4
work_keys_str_mv AT asmarshady chlorhexidinedecontaminationofsputumforculturingmycobacteriumtuberculosis
AT drancourtmichel chlorhexidinedecontaminationofsputumforculturingmycobacteriumtuberculosis