Cargando…
Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models
BACKGROUND: Prostate cancer is the most common form of cancer and the second leading cause of cancer death in North America. Auto-detection of prostate cancer can play a major role in early detection of prostate cancer, which has a significant impact on patient survival rates. While multi-parametric...
Autores principales: | Khalvati, Farzad, Wong, Alexander, Haider, Masoom A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524105/ https://www.ncbi.nlm.nih.gov/pubmed/26242589 http://dx.doi.org/10.1186/s12880-015-0069-9 |
Ejemplares similares
-
MPCaD: a multi-scale radiomics-driven framework for automated prostate cancer localization and detection
por: Khalvati, Farzad, et al.
Publicado: (2018) -
CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma – a quantitative analysis
por: Eilaghi, Armin, et al.
Publicado: (2017) -
Prostate Cancer Detection using Deep Convolutional Neural Networks
por: Yoo, Sunghwan, et al.
Publicado: (2019) -
CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib
por: Haider, Masoom A., et al.
Publicado: (2017) -
Radiomics Driven Diffusion Weighted Imaging Sensing Strategies for Zone-Level Prostate Cancer Sensing
por: Dulhanty, Chris, et al.
Publicado: (2020)