Cargando…
Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation
Objective: Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. Methods: Lipopolysaccharide (LPS) or saline were administered intravenously to non-anesthetized chronically...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524165/ https://www.ncbi.nlm.nih.gov/pubmed/26300730 http://dx.doi.org/10.3389/fncel.2015.00294 |
_version_ | 1782384161571471360 |
---|---|
author | Cao, Mingju Cortes, Marina Moore, Craig S. Leong, Soo Yuen Durosier, Lucien D. Burns, Patrick Fecteau, Gilles Desrochers, Andre Auer, Roland N. Barreiro, Luis B. Antel, Jack P. Frasch, Martin G. |
author_facet | Cao, Mingju Cortes, Marina Moore, Craig S. Leong, Soo Yuen Durosier, Lucien D. Burns, Patrick Fecteau, Gilles Desrochers, Andre Auer, Roland N. Barreiro, Luis B. Antel, Jack P. Frasch, Martin G. |
author_sort | Cao, Mingju |
collection | PubMed |
description | Objective: Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. Methods: Lipopolysaccharide (LPS) or saline were administered intravenously to non-anesthetized chronically instrumented near-term fetal sheep to model fetal inflammation in vivo. Microglia were then isolated from in vivo LPS and saline (naïve) exposed animals. To mimic the second hit of neuroinflammation, these microglia were then re-exposed to LPS in vitro. Cytokine responses were measured in vivo and subsequently in vitro in the primary microglia cultures derived from these animals. We sequenced the whole transcriptome of naïve and second hit microglia and profiled their genetic expression to define molecular pathways disrupted during neuroinflammation. Results: In vivo LPS exposure resulted in IL-6 increase in fetal plasma 3 h post LPS exposure. Even though not histologically apparent, microglia acquired a pro-inflammatory phenotype in vivo that was sustained and amplified in vitro upon second hit LPS exposure as measured by IL-1β response in vitro and RNAseq analyses. While NFKB and Jak-Stat inflammatory pathways were up regulated in naïve microglia, heme oxygenase 1 (HMOX1) and Fructose-1,6-bisphosphatase (FBP) genes were uniquely differentially expressed in the second hit microglia. Compared to the microglia exposed to LPS in vitro only, the transcriptome of the in vivo LPS pre-exposed microglia showed a diminished differential gene expression in inflammatory and metabolic pathways prior and upon re-exposure to LPS in vitro. Notably, this desensitization response was also observed in histone deacetylases (HDAC) 1, 2, 4, and 6. Microglial calreticulin/LRP genes implicated in microglia-neuronal communication relevant for the neuronal development were up regulated in second hit microglia. Discussion: We identified a unique HMOX1(down) and FBP(up) phenotype of microglia exposed to the double-hit suggesting interplay of inflammatory and metabolic pathways. Our findings suggest that epigenetic mechanisms mediate this immunological and metabolic memory of the prior inflammatory insult relevant to neuronal development and provide new therapeutic targets for early postnatal intervention to prevent brain injury. |
format | Online Article Text |
id | pubmed-4524165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-45241652015-08-21 Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation Cao, Mingju Cortes, Marina Moore, Craig S. Leong, Soo Yuen Durosier, Lucien D. Burns, Patrick Fecteau, Gilles Desrochers, Andre Auer, Roland N. Barreiro, Luis B. Antel, Jack P. Frasch, Martin G. Front Cell Neurosci Neuroscience Objective: Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. Methods: Lipopolysaccharide (LPS) or saline were administered intravenously to non-anesthetized chronically instrumented near-term fetal sheep to model fetal inflammation in vivo. Microglia were then isolated from in vivo LPS and saline (naïve) exposed animals. To mimic the second hit of neuroinflammation, these microglia were then re-exposed to LPS in vitro. Cytokine responses were measured in vivo and subsequently in vitro in the primary microglia cultures derived from these animals. We sequenced the whole transcriptome of naïve and second hit microglia and profiled their genetic expression to define molecular pathways disrupted during neuroinflammation. Results: In vivo LPS exposure resulted in IL-6 increase in fetal plasma 3 h post LPS exposure. Even though not histologically apparent, microglia acquired a pro-inflammatory phenotype in vivo that was sustained and amplified in vitro upon second hit LPS exposure as measured by IL-1β response in vitro and RNAseq analyses. While NFKB and Jak-Stat inflammatory pathways were up regulated in naïve microglia, heme oxygenase 1 (HMOX1) and Fructose-1,6-bisphosphatase (FBP) genes were uniquely differentially expressed in the second hit microglia. Compared to the microglia exposed to LPS in vitro only, the transcriptome of the in vivo LPS pre-exposed microglia showed a diminished differential gene expression in inflammatory and metabolic pathways prior and upon re-exposure to LPS in vitro. Notably, this desensitization response was also observed in histone deacetylases (HDAC) 1, 2, 4, and 6. Microglial calreticulin/LRP genes implicated in microglia-neuronal communication relevant for the neuronal development were up regulated in second hit microglia. Discussion: We identified a unique HMOX1(down) and FBP(up) phenotype of microglia exposed to the double-hit suggesting interplay of inflammatory and metabolic pathways. Our findings suggest that epigenetic mechanisms mediate this immunological and metabolic memory of the prior inflammatory insult relevant to neuronal development and provide new therapeutic targets for early postnatal intervention to prevent brain injury. Frontiers Media S.A. 2015-08-04 /pmc/articles/PMC4524165/ /pubmed/26300730 http://dx.doi.org/10.3389/fncel.2015.00294 Text en Copyright © 2015 Cao, Cortes, Moore, Leong, Durosier, Burns, Fecteau, Desrochers, Auer, Barreiro, Antel and Frasch. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Cao, Mingju Cortes, Marina Moore, Craig S. Leong, Soo Yuen Durosier, Lucien D. Burns, Patrick Fecteau, Gilles Desrochers, Andre Auer, Roland N. Barreiro, Luis B. Antel, Jack P. Frasch, Martin G. Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation |
title | Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation |
title_full | Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation |
title_fullStr | Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation |
title_full_unstemmed | Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation |
title_short | Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation |
title_sort | fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524165/ https://www.ncbi.nlm.nih.gov/pubmed/26300730 http://dx.doi.org/10.3389/fncel.2015.00294 |
work_keys_str_mv | AT caomingju fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT cortesmarina fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT moorecraigs fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT leongsooyuen fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT durosierluciend fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT burnspatrick fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT fecteaugilles fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT desrochersandre fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT auerrolandn fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT barreiroluisb fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT anteljackp fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation AT fraschmarting fetalmicroglialphenotypeinvitrocarriesmemoryofpriorinvivoexposuretoinflammation |