Cargando…

Variation in the X:Autosome Distribution of Male-Biased Genes among Drosophila melanogaster Tissues and Its Relationship with Dosage Compensation

Genes that are expressed differently between males and females (sex-biased genes) often show a nonrandom distribution in their genomic location, particularly with respect to the autosomes and the X chromosome. Previous studies of Drosophila melanogaster found a general paucity of male-biased genes o...

Descripción completa

Detalles Bibliográficos
Autores principales: Huylmans, Ann Kathrin, Parsch, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4524484/
https://www.ncbi.nlm.nih.gov/pubmed/26108491
http://dx.doi.org/10.1093/gbe/evv117
Descripción
Sumario:Genes that are expressed differently between males and females (sex-biased genes) often show a nonrandom distribution in their genomic location, particularly with respect to the autosomes and the X chromosome. Previous studies of Drosophila melanogaster found a general paucity of male-biased genes on the X chromosome, although this is mainly limited to comparisons of whole flies or body segments containing the reproductive organs. To better understand the chromosomal distribution of sex-biased genes in various tissues, we used a common analysis framework to analyze microarray and RNA sequence data comparing male and female gene expression in individual tissues (brain, Malpighian tubule, and gonads), composite structures (head and gonadectomized carcass), and whole flies. Although there are relatively few sex-biased genes in the brain, there is a strong and highly significant enrichment of male-biased genes on the X chromosome. A weaker enrichment of X-linked male-biased genes is seen in the head, suggesting that most of this signal comes from the brain. In all other tissues, there is either no departure from the random expectation or a significant paucity of male-biased genes on the X chromosome. The brain and head also differ from other tissues in that their male-biased genes are significantly closer to binding sites of the dosage compensation complex. We propose that the interplay of dosage compensation and sex-specific regulation can explain the observed differences between tissues and reconcile disparate results reported in previous studies.