Cargando…
Personalized Predictive Modeling and Risk Factor Identification using Patient Similarity
Personalized predictive models are customized for an individual patient and trained using information from similar patients. Compared to global models trained on all patients, they have the potential to produce more accurate risk scores and capture more relevant risk factors for individual patients....
Autores principales: | Ng, Kenney, Sun, Jimeng, Hu, Jianying, Wang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525240/ https://www.ncbi.nlm.nih.gov/pubmed/26306255 |
Ejemplares similares
-
Towards Personalized Medicine: Leveraging Patient Similarity and Drug Similarity Analytics
por: Zhang, Ping, et al.
Publicado: (2014) -
Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis
por: Lee, Junghye, et al.
Publicado: (2018) -
Measurement and application of patient similarity in personalized predictive modeling based on electronic medical records
por: Wang, Ni, et al.
Publicado: (2019) -
Identifying unreliable predictions in clinical risk models
por: Myers, Paul D., et al.
Publicado: (2020) -
The Evaluation of Risk Factors for Postoperative Infectious Complications after Percutaneous Nephrolithotomy
por: Yang, Tian, et al.
Publicado: (2017)