Cargando…
A system for identifying and investigating unexpected response to treatment
The availability of electronic health records creates fertile ground for developing computational models for various medical conditions. Using machine learning, we can detect patients with unexpected responses to treatment and provide statistical testing and visualization tools to help further analy...
Autores principales: | Ozery-Flato, Michal, Ein-Dor, Liat, Neuvirth, Hani, Parush, Naama, Kohn, Martin S., Hu, Jianying, Aharonov, Ranit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525242/ https://www.ncbi.nlm.nih.gov/pubmed/26306256 |
Ejemplares similares
-
Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome
por: Thévenin, Annelyse, et al.
Publicado: (2014) -
Impact of the COVID-19 Pandemic on Clinical Findings in Medical Imaging Exams in a Nationwide Israeli Health Organization: Observational Study
por: Ozery-Flato, Michal, et al.
Publicado: (2023) -
Predictive models for type 2 diabetes onset in middle-aged subjects with the metabolic syndrome
por: Ozery-Flato, Michal, et al.
Publicado: (2013) -
Framework for identifying drug repurposing candidates from observational healthcare data
por: Ozery-Flato, Michal, et al.
Publicado: (2020) -
Emulated Clinical Trials from Longitudinal Real-World Data Efficiently Identify Candidates for Neurological Disease Modification: Examples from Parkinson’s Disease
por: Laifenfeld, Daphna, et al.
Publicado: (2021)