Cargando…
Detecting Cancer Pathway Crosstalk with Distance Correlation
Biological pathway regulation is complex, yet it underlies the functional coordination in a cell. Cancer is a disease that is characterized by unregulated growth, driven by underlying pathway deregulation. This pathway deregulation is both within pathways and between pathways. Here, we propose a met...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525273/ https://www.ncbi.nlm.nih.gov/pubmed/26306231 |
Sumario: | Biological pathway regulation is complex, yet it underlies the functional coordination in a cell. Cancer is a disease that is characterized by unregulated growth, driven by underlying pathway deregulation. This pathway deregulation is both within pathways and between pathways. Here, we propose a method to detect inter-pathway coordination using distance correlation. Utilizing data generated from microarray experiments, we separate the genes into pathways and calculate the pairwise distance correlation between them. The result is intuitively viewed as a network of differentially dependent pathways. We find intuitive, yet surprising significant hub pathways, including glycophosphatidylinositol anchor synthesis in lung cancer. |
---|