Cargando…

Ultrafast spontaneous emission source using plasmonic nanoantennas

Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1–10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoang, Thang B., Akselrod, Gleb M., Argyropoulos, Christos, Huang, Jiani, Smith, David R., Mikkelsen, Maiken H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525280/
https://www.ncbi.nlm.nih.gov/pubmed/26212857
http://dx.doi.org/10.1038/ncomms8788
Descripción
Sumario:Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1–10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an emission rate exceeding 90 GHz, using a hybrid structure of single plasmonic nanopatch antennas coupled to colloidal quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core–shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ∼50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.