Cargando…
Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia
Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525489/ https://www.ncbi.nlm.nih.gov/pubmed/26300878 http://dx.doi.org/10.3389/fmicb.2015.00815 |
_version_ | 1782384343090462720 |
---|---|
author | Scoffone, Viola C. Ryabova, Olga Makarov, Vadim Iadarola, Paolo Fumagalli, Marco Fondi, Marco Fani, Renato De Rossi, Edda Riccardi, Giovanna Buroni, Silvia |
author_facet | Scoffone, Viola C. Ryabova, Olga Makarov, Vadim Iadarola, Paolo Fumagalli, Marco Fondi, Marco Fani, Renato De Rossi, Edda Riccardi, Giovanna Buroni, Silvia |
author_sort | Scoffone, Viola C. |
collection | PubMed |
description | Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8 μg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known B. cepacia complex species. Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by quantitative reverse transcription PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance. |
format | Online Article Text |
id | pubmed-4525489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-45254892015-08-21 Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia Scoffone, Viola C. Ryabova, Olga Makarov, Vadim Iadarola, Paolo Fumagalli, Marco Fondi, Marco Fani, Renato De Rossi, Edda Riccardi, Giovanna Buroni, Silvia Front Microbiol Microbiology Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8 μg/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known B. cepacia complex species. Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 efflux pump. Indeed, rnd-9 overexpression was confirmed by quantitative reverse transcription PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the efflux of 10126109, thus indicating again the central role of efflux transporters in B. cenocepacia drug resistance. Frontiers Media S.A. 2015-08-05 /pmc/articles/PMC4525489/ /pubmed/26300878 http://dx.doi.org/10.3389/fmicb.2015.00815 Text en Copyright © 2015 Scoffone, Ryabova, Makarov, Iadarola, Fumagalli, Fondi, Fani, De Rossi, Riccardi and Buroni. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Scoffone, Viola C. Ryabova, Olga Makarov, Vadim Iadarola, Paolo Fumagalli, Marco Fondi, Marco Fani, Renato De Rossi, Edda Riccardi, Giovanna Buroni, Silvia Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia |
title | Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia |
title_full | Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia |
title_fullStr | Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia |
title_full_unstemmed | Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia |
title_short | Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia |
title_sort | efflux-mediated resistance to a benzothiadiazol derivative effective against burkholderia cenocepacia |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525489/ https://www.ncbi.nlm.nih.gov/pubmed/26300878 http://dx.doi.org/10.3389/fmicb.2015.00815 |
work_keys_str_mv | AT scoffoneviolac effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia AT ryabovaolga effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia AT makarovvadim effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia AT iadarolapaolo effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia AT fumagallimarco effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia AT fondimarco effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia AT fanirenato effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia AT derossiedda effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia AT riccardigiovanna effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia AT buronisilvia effluxmediatedresistancetoabenzothiadiazolderivativeeffectiveagainstburkholderiacenocepacia |