Cargando…

Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices

The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO(3)/Sr...

Descripción completa

Detalles Bibliográficos
Autores principales: Hurand, S., Jouan, A., Feuillet-Palma, C., Singh, G., Biscaras, J., Lesne, E., Reyren, N., Barthélémy, A., Bibes, M., Villegas, J. E., Ulysse, C., Lafosse, X., Pannetier-Lecoeur, M., Caprara, S., Grilli, M., Lesueur, J., Bergeal, N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525493/
https://www.ncbi.nlm.nih.gov/pubmed/26244916
http://dx.doi.org/10.1038/srep12751
_version_ 1782384344012161024
author Hurand, S.
Jouan, A.
Feuillet-Palma, C.
Singh, G.
Biscaras, J.
Lesne, E.
Reyren, N.
Barthélémy, A.
Bibes, M.
Villegas, J. E.
Ulysse, C.
Lafosse, X.
Pannetier-Lecoeur, M.
Caprara, S.
Grilli, M.
Lesueur, J.
Bergeal, N.
author_facet Hurand, S.
Jouan, A.
Feuillet-Palma, C.
Singh, G.
Biscaras, J.
Lesne, E.
Reyren, N.
Barthélémy, A.
Bibes, M.
Villegas, J. E.
Ulysse, C.
Lafosse, X.
Pannetier-Lecoeur, M.
Caprara, S.
Grilli, M.
Lesueur, J.
Bergeal, N.
author_sort Hurand, S.
collection PubMed
description The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO(3)/SrTiO(3) interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO(3)/SrTiO(3) device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements show that the Rashba coupling constant increases linearly with the interfacial electric field. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates.
format Online
Article
Text
id pubmed-4525493
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-45254932015-08-06 Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices Hurand, S. Jouan, A. Feuillet-Palma, C. Singh, G. Biscaras, J. Lesne, E. Reyren, N. Barthélémy, A. Bibes, M. Villegas, J. E. Ulysse, C. Lafosse, X. Pannetier-Lecoeur, M. Caprara, S. Grilli, M. Lesueur, J. Bergeal, N. Sci Rep Article The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO(3)/SrTiO(3) interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO(3)/SrTiO(3) device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements show that the Rashba coupling constant increases linearly with the interfacial electric field. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates. Nature Publishing Group 2015-08-05 /pmc/articles/PMC4525493/ /pubmed/26244916 http://dx.doi.org/10.1038/srep12751 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Hurand, S.
Jouan, A.
Feuillet-Palma, C.
Singh, G.
Biscaras, J.
Lesne, E.
Reyren, N.
Barthélémy, A.
Bibes, M.
Villegas, J. E.
Ulysse, C.
Lafosse, X.
Pannetier-Lecoeur, M.
Caprara, S.
Grilli, M.
Lesueur, J.
Bergeal, N.
Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices
title Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices
title_full Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices
title_fullStr Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices
title_full_unstemmed Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices
title_short Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices
title_sort field-effect control of superconductivity and rashba spin-orbit coupling in top-gated laalo(3)/srtio(3) devices
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525493/
https://www.ncbi.nlm.nih.gov/pubmed/26244916
http://dx.doi.org/10.1038/srep12751
work_keys_str_mv AT hurands fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT jouana fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT feuilletpalmac fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT singhg fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT biscarasj fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT lesnee fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT reyrenn fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT barthelemya fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT bibesm fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT villegasje fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT ulyssec fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT lafossex fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT pannetierlecoeurm fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT capraras fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT grillim fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT lesueurj fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices
AT bergealn fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices