Cargando…
Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices
The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO(3)/Sr...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525493/ https://www.ncbi.nlm.nih.gov/pubmed/26244916 http://dx.doi.org/10.1038/srep12751 |
_version_ | 1782384344012161024 |
---|---|
author | Hurand, S. Jouan, A. Feuillet-Palma, C. Singh, G. Biscaras, J. Lesne, E. Reyren, N. Barthélémy, A. Bibes, M. Villegas, J. E. Ulysse, C. Lafosse, X. Pannetier-Lecoeur, M. Caprara, S. Grilli, M. Lesueur, J. Bergeal, N. |
author_facet | Hurand, S. Jouan, A. Feuillet-Palma, C. Singh, G. Biscaras, J. Lesne, E. Reyren, N. Barthélémy, A. Bibes, M. Villegas, J. E. Ulysse, C. Lafosse, X. Pannetier-Lecoeur, M. Caprara, S. Grilli, M. Lesueur, J. Bergeal, N. |
author_sort | Hurand, S. |
collection | PubMed |
description | The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO(3)/SrTiO(3) interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO(3)/SrTiO(3) device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements show that the Rashba coupling constant increases linearly with the interfacial electric field. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates. |
format | Online Article Text |
id | pubmed-4525493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-45254932015-08-06 Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices Hurand, S. Jouan, A. Feuillet-Palma, C. Singh, G. Biscaras, J. Lesne, E. Reyren, N. Barthélémy, A. Bibes, M. Villegas, J. E. Ulysse, C. Lafosse, X. Pannetier-Lecoeur, M. Caprara, S. Grilli, M. Lesueur, J. Bergeal, N. Sci Rep Article The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO(3)/SrTiO(3) interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO(3)/SrTiO(3) device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements show that the Rashba coupling constant increases linearly with the interfacial electric field. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates. Nature Publishing Group 2015-08-05 /pmc/articles/PMC4525493/ /pubmed/26244916 http://dx.doi.org/10.1038/srep12751 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Hurand, S. Jouan, A. Feuillet-Palma, C. Singh, G. Biscaras, J. Lesne, E. Reyren, N. Barthélémy, A. Bibes, M. Villegas, J. E. Ulysse, C. Lafosse, X. Pannetier-Lecoeur, M. Caprara, S. Grilli, M. Lesueur, J. Bergeal, N. Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices |
title | Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices |
title_full | Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices |
title_fullStr | Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices |
title_full_unstemmed | Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices |
title_short | Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO(3)/SrTiO(3) devices |
title_sort | field-effect control of superconductivity and rashba spin-orbit coupling in top-gated laalo(3)/srtio(3) devices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525493/ https://www.ncbi.nlm.nih.gov/pubmed/26244916 http://dx.doi.org/10.1038/srep12751 |
work_keys_str_mv | AT hurands fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT jouana fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT feuilletpalmac fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT singhg fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT biscarasj fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT lesnee fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT reyrenn fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT barthelemya fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT bibesm fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT villegasje fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT ulyssec fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT lafossex fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT pannetierlecoeurm fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT capraras fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT grillim fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT lesueurj fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices AT bergealn fieldeffectcontrolofsuperconductivityandrashbaspinorbitcouplingintopgatedlaalo3srtio3devices |