Cargando…

High-order finite element methods for cardiac monodomain simulations

Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of hig...

Descripción completa

Detalles Bibliográficos
Autores principales: Vincent, Kevin P., Gonzales, Matthew J., Gillette, Andrew K., Villongco, Christopher T., Pezzuto, Simone, Omens, Jeffrey H., Holst, Michael J., McCulloch, Andrew D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525671/
https://www.ncbi.nlm.nih.gov/pubmed/26300783
http://dx.doi.org/10.3389/fphys.2015.00217
_version_ 1782384344929665024
author Vincent, Kevin P.
Gonzales, Matthew J.
Gillette, Andrew K.
Villongco, Christopher T.
Pezzuto, Simone
Omens, Jeffrey H.
Holst, Michael J.
McCulloch, Andrew D.
author_facet Vincent, Kevin P.
Gonzales, Matthew J.
Gillette, Andrew K.
Villongco, Christopher T.
Pezzuto, Simone
Omens, Jeffrey H.
Holst, Michael J.
McCulloch, Andrew D.
author_sort Vincent, Kevin P.
collection PubMed
description Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori.
format Online
Article
Text
id pubmed-4525671
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-45256712015-08-21 High-order finite element methods for cardiac monodomain simulations Vincent, Kevin P. Gonzales, Matthew J. Gillette, Andrew K. Villongco, Christopher T. Pezzuto, Simone Omens, Jeffrey H. Holst, Michael J. McCulloch, Andrew D. Front Physiol Physiology Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori. Frontiers Media S.A. 2015-08-05 /pmc/articles/PMC4525671/ /pubmed/26300783 http://dx.doi.org/10.3389/fphys.2015.00217 Text en Copyright © 2015 Vincent, Gonzales, Gillette, Villongco, Pezzuto, Omens, Holst and McCulloch. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Vincent, Kevin P.
Gonzales, Matthew J.
Gillette, Andrew K.
Villongco, Christopher T.
Pezzuto, Simone
Omens, Jeffrey H.
Holst, Michael J.
McCulloch, Andrew D.
High-order finite element methods for cardiac monodomain simulations
title High-order finite element methods for cardiac monodomain simulations
title_full High-order finite element methods for cardiac monodomain simulations
title_fullStr High-order finite element methods for cardiac monodomain simulations
title_full_unstemmed High-order finite element methods for cardiac monodomain simulations
title_short High-order finite element methods for cardiac monodomain simulations
title_sort high-order finite element methods for cardiac monodomain simulations
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525671/
https://www.ncbi.nlm.nih.gov/pubmed/26300783
http://dx.doi.org/10.3389/fphys.2015.00217
work_keys_str_mv AT vincentkevinp highorderfiniteelementmethodsforcardiacmonodomainsimulations
AT gonzalesmatthewj highorderfiniteelementmethodsforcardiacmonodomainsimulations
AT gilletteandrewk highorderfiniteelementmethodsforcardiacmonodomainsimulations
AT villongcochristophert highorderfiniteelementmethodsforcardiacmonodomainsimulations
AT pezzutosimone highorderfiniteelementmethodsforcardiacmonodomainsimulations
AT omensjeffreyh highorderfiniteelementmethodsforcardiacmonodomainsimulations
AT holstmichaelj highorderfiniteelementmethodsforcardiacmonodomainsimulations
AT mccullochandrewd highorderfiniteelementmethodsforcardiacmonodomainsimulations