Cargando…
High-order finite element methods for cardiac monodomain simulations
Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of hig...
Autores principales: | Vincent, Kevin P., Gonzales, Matthew J., Gillette, Andrew K., Villongco, Christopher T., Pezzuto, Simone, Omens, Jeffrey H., Holst, Michael J., McCulloch, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525671/ https://www.ncbi.nlm.nih.gov/pubmed/26300783 http://dx.doi.org/10.3389/fphys.2015.00217 |
Ejemplares similares
-
Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts
por: Lewalle, Alexandre, et al.
Publicado: (2018) -
Buckling of Arteries With Noncircular Cross Sections: Theory and Finite Element Simulations
por: Seddighi, Yasamin, et al.
Publicado: (2021) -
Homogenisation for the monodomain model in the presence of microscopic fibrotic structures
por: Lawson, Brodie A.J., et al.
Publicado: (2023) -
Efficient simulation of cardiac electrical propagation using high order finite
elements
por: Arthurs, Christopher J., et al.
Publicado: (2012) -
A Self-Assembly Pathway to Aligned Monodomain Gels
por: Zhang, Shuming, et al.
Publicado: (2010)