Cargando…
Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage
[Image: see text] We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12–46 nm and with excellent size distribution as small as 7–8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of na...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525770/ https://www.ncbi.nlm.nih.gov/pubmed/25133552 http://dx.doi.org/10.1021/ja506712d |
_version_ | 1782384359675789312 |
---|---|
author | Yarema, Maksym Wörle, Michael Rossell, Marta D. Erni, Rolf Caputo, Riccarda Protesescu, Loredana Kravchyk, Kostiantyn V. Dirin, Dmitry N. Lienau, Karla von Rohr, Fabian Schilling, Andreas Nachtegaal, Maarten Kovalenko, Maksym V. |
author_facet | Yarema, Maksym Wörle, Michael Rossell, Marta D. Erni, Rolf Caputo, Riccarda Protesescu, Loredana Kravchyk, Kostiantyn V. Dirin, Dmitry N. Lienau, Karla von Rohr, Fabian Schilling, Andreas Nachtegaal, Maarten Kovalenko, Maksym V. |
author_sort | Yarema, Maksym |
collection | PubMed |
description | [Image: see text] We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12–46 nm and with excellent size distribution as small as 7–8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2–3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98–298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140–145 and 240–250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(–1), 50% higher than those achieved for bulk Ga under identical testing conditions. |
format | Online Article Text |
id | pubmed-4525770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-45257702015-08-18 Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage Yarema, Maksym Wörle, Michael Rossell, Marta D. Erni, Rolf Caputo, Riccarda Protesescu, Loredana Kravchyk, Kostiantyn V. Dirin, Dmitry N. Lienau, Karla von Rohr, Fabian Schilling, Andreas Nachtegaal, Maarten Kovalenko, Maksym V. J Am Chem Soc [Image: see text] We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12–46 nm and with excellent size distribution as small as 7–8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2–3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98–298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140–145 and 240–250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(–1), 50% higher than those achieved for bulk Ga under identical testing conditions. American Chemical Society 2014-08-18 2014-09-03 /pmc/articles/PMC4525770/ /pubmed/25133552 http://dx.doi.org/10.1021/ja506712d Text en Copyright © 2014 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Yarema, Maksym Wörle, Michael Rossell, Marta D. Erni, Rolf Caputo, Riccarda Protesescu, Loredana Kravchyk, Kostiantyn V. Dirin, Dmitry N. Lienau, Karla von Rohr, Fabian Schilling, Andreas Nachtegaal, Maarten Kovalenko, Maksym V. Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage |
title | Monodisperse
Colloidal Gallium Nanoparticles: Synthesis,
Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion
Storage |
title_full | Monodisperse
Colloidal Gallium Nanoparticles: Synthesis,
Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion
Storage |
title_fullStr | Monodisperse
Colloidal Gallium Nanoparticles: Synthesis,
Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion
Storage |
title_full_unstemmed | Monodisperse
Colloidal Gallium Nanoparticles: Synthesis,
Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion
Storage |
title_short | Monodisperse
Colloidal Gallium Nanoparticles: Synthesis,
Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion
Storage |
title_sort | monodisperse
colloidal gallium nanoparticles: synthesis,
low temperature crystallization, surface plasmon resonance and li-ion
storage |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525770/ https://www.ncbi.nlm.nih.gov/pubmed/25133552 http://dx.doi.org/10.1021/ja506712d |
work_keys_str_mv | AT yaremamaksym monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT worlemichael monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT rossellmartad monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT ernirolf monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT caputoriccarda monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT protesesculoredana monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT kravchykkostiantynv monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT dirindmitryn monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT lienaukarla monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT vonrohrfabian monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT schillingandreas monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT nachtegaalmaarten monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage AT kovalenkomaksymv monodispersecolloidalgalliumnanoparticlessynthesislowtemperaturecrystallizationsurfaceplasmonresonanceandliionstorage |