Cargando…
Xpp1 regulates the expression of xylanases, but not of cellulases in Trichoderma reesei
BACKGROUND: The ascomycete Trichoderma reesei is industrially used for the production of cellulases. During the production process xylanases are co-secreted, which uses energy and nutrients. Cellulases and xylanases share the same main regulators, which makes a knowledge-based strain design difficul...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526299/ https://www.ncbi.nlm.nih.gov/pubmed/26246855 http://dx.doi.org/10.1186/s13068-015-0298-8 |
Sumario: | BACKGROUND: The ascomycete Trichoderma reesei is industrially used for the production of cellulases. During the production process xylanases are co-secreted, which uses energy and nutrients. Cellulases and xylanases share the same main regulators, which makes a knowledge-based strain design difficult. However, previously a cis-element in the promoter of the main xylanase-encoding gene was identified as binding site for a putative repressor. Subsequently, three candidate repressors were identified in a pull-down approach. The expression of the most promising candidate, Xpp1 (Xylanase promoter-binding protein 1), was reported to be up-regulated on the repressing carbon source d-glucose and to bind the cis-element in vitro. RESULTS: In this study, Xpp1 was deleted and over-expressed in T. reesei. An in vivo DNA-footprint assay indicated that Xpp1 binds a palindromic sequence in the xyn2 promoter. Comparison of the deletion, the over-expression, and the parent strain demonstrated that Xpp1 regulates gene expression of xylanolytic enzymes at later cultivation stages. Xpp1 expression was found to be up-regulated, additionally to d-glucose, by high d-xylose availability. These findings together with the observed xyn2 transcript levels during growth on xylan suggest that Xpp1 is the mediator of a feedback mechanism. Notably, Xpp1 has neither influence on the d-xylose metabolism nor on the expression of cellulases. CONCLUSIONS: Xpp1 as regulator acting on the expression of xylanases, but not cellulases, is a highly promising candidate for knowledge-based strain design to improve the cellulases-to-xylanases ratio during industrial cellulase production. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-015-0298-8) contains supplementary material, which is available to authorized users. |
---|