Cargando…
Automated Diagnosis of Mammogram Images of Breast Cancer Using Discrete Wavelet Transform and Spherical Wavelet Transform Features: A Comparative Study
Mammograms are one of the most widely used techniques for preliminary screening of breast cancers. There is great demand for early detection and diagnosis of breast cancer using mammograms. Texture based feature extraction techniques are widely used for mammographic image analysis. In specific, wave...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527460/ https://www.ncbi.nlm.nih.gov/pubmed/24000991 http://dx.doi.org/10.7785/tcrtexpress.2013.600262 |
_version_ | 1782384568354996224 |
---|---|
author | Ganesan, Karthikeyan Acharya, U. Rajendra Chua, Chua Kuang Min, Lim Choo Abraham, Thomas K. |
author_facet | Ganesan, Karthikeyan Acharya, U. Rajendra Chua, Chua Kuang Min, Lim Choo Abraham, Thomas K. |
author_sort | Ganesan, Karthikeyan |
collection | PubMed |
description | Mammograms are one of the most widely used techniques for preliminary screening of breast cancers. There is great demand for early detection and diagnosis of breast cancer using mammograms. Texture based feature extraction techniques are widely used for mammographic image analysis. In specific, wavelets are a popular choice for texture analysis of these images. Though discrete wavelets have been used extensively for this purpose, spherical wavelets have rarely been used for Computer-Aided Diagnosis (CAD) of breast cancer using mammograms. In this work, a comparison of the performance between the features of Discrete Wavelet Transform (DWT) and Spherical Wavelet Transform (SWT) based on the classification results of normal, benign and malignant stage was studied. Classification was performed using Linear Discriminant Classifier (LDC), Quadratic Discriminant Classifier (QDC), Nearest Mean Classifier (NMC), Support Vector Machines (SVM) and Parzen Classifier (ParzenC). We have obtained a maximum classification accuracy of 81.73% for DWT and 88.80% for SWT features using SVM classifier. |
format | Online Article Text |
id | pubmed-4527460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-45274602015-10-20 Automated Diagnosis of Mammogram Images of Breast Cancer Using Discrete Wavelet Transform and Spherical Wavelet Transform Features: A Comparative Study Ganesan, Karthikeyan Acharya, U. Rajendra Chua, Chua Kuang Min, Lim Choo Abraham, Thomas K. Technol Cancer Res Treat Articles Mammograms are one of the most widely used techniques for preliminary screening of breast cancers. There is great demand for early detection and diagnosis of breast cancer using mammograms. Texture based feature extraction techniques are widely used for mammographic image analysis. In specific, wavelets are a popular choice for texture analysis of these images. Though discrete wavelets have been used extensively for this purpose, spherical wavelets have rarely been used for Computer-Aided Diagnosis (CAD) of breast cancer using mammograms. In this work, a comparison of the performance between the features of Discrete Wavelet Transform (DWT) and Spherical Wavelet Transform (SWT) based on the classification results of normal, benign and malignant stage was studied. Classification was performed using Linear Discriminant Classifier (LDC), Quadratic Discriminant Classifier (QDC), Nearest Mean Classifier (NMC), Support Vector Machines (SVM) and Parzen Classifier (ParzenC). We have obtained a maximum classification accuracy of 81.73% for DWT and 88.80% for SWT features using SVM classifier. SAGE Publications 2014-12 /pmc/articles/PMC4527460/ /pubmed/24000991 http://dx.doi.org/10.7785/tcrtexpress.2013.600262 Text en © Adenine Press (2014) http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Articles Ganesan, Karthikeyan Acharya, U. Rajendra Chua, Chua Kuang Min, Lim Choo Abraham, Thomas K. Automated Diagnosis of Mammogram Images of Breast Cancer Using Discrete Wavelet Transform and Spherical Wavelet Transform Features: A Comparative Study |
title | Automated Diagnosis of Mammogram Images of Breast Cancer Using Discrete Wavelet Transform and Spherical Wavelet Transform Features: A Comparative Study |
title_full | Automated Diagnosis of Mammogram Images of Breast Cancer Using Discrete Wavelet Transform and Spherical Wavelet Transform Features: A Comparative Study |
title_fullStr | Automated Diagnosis of Mammogram Images of Breast Cancer Using Discrete Wavelet Transform and Spherical Wavelet Transform Features: A Comparative Study |
title_full_unstemmed | Automated Diagnosis of Mammogram Images of Breast Cancer Using Discrete Wavelet Transform and Spherical Wavelet Transform Features: A Comparative Study |
title_short | Automated Diagnosis of Mammogram Images of Breast Cancer Using Discrete Wavelet Transform and Spherical Wavelet Transform Features: A Comparative Study |
title_sort | automated diagnosis of mammogram images of breast cancer using discrete wavelet transform and spherical wavelet transform features: a comparative study |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527460/ https://www.ncbi.nlm.nih.gov/pubmed/24000991 http://dx.doi.org/10.7785/tcrtexpress.2013.600262 |
work_keys_str_mv | AT ganesankarthikeyan automateddiagnosisofmammogramimagesofbreastcancerusingdiscretewavelettransformandsphericalwavelettransformfeaturesacomparativestudy AT acharyaurajendra automateddiagnosisofmammogramimagesofbreastcancerusingdiscretewavelettransformandsphericalwavelettransformfeaturesacomparativestudy AT chuachuakuang automateddiagnosisofmammogramimagesofbreastcancerusingdiscretewavelettransformandsphericalwavelettransformfeaturesacomparativestudy AT minlimchoo automateddiagnosisofmammogramimagesofbreastcancerusingdiscretewavelettransformandsphericalwavelettransformfeaturesacomparativestudy AT abrahamthomask automateddiagnosisofmammogramimagesofbreastcancerusingdiscretewavelettransformandsphericalwavelettransformfeaturesacomparativestudy |