Cargando…
Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures
Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527839/ https://www.ncbi.nlm.nih.gov/pubmed/26248029 http://dx.doi.org/10.1371/journal.pone.0132701 |
_version_ | 1782384629499559936 |
---|---|
author | Vriens, Kim Cools, Tanne L. Harvey, Peta J. Craik, David J. Spincemaille, Pieter Cassiman, David Braem, Annabel Vleugels, Jozef Nibbering, Peter H. Drijfhout, Jan Wouter De Coninck, Barbara Cammue, Bruno P. A. Thevissen, Karin |
author_facet | Vriens, Kim Cools, Tanne L. Harvey, Peta J. Craik, David J. Spincemaille, Pieter Cassiman, David Braem, Annabel Vleugels, Jozef Nibbering, Peter H. Drijfhout, Jan Wouter De Coninck, Barbara Cammue, Bruno P. A. Thevissen, Karin |
author_sort | Vriens, Kim |
collection | PubMed |
description | Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel β-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment) of 11.00 ± 1.70 μM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 μM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 μM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development. |
format | Online Article Text |
id | pubmed-4527839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45278392015-08-12 Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures Vriens, Kim Cools, Tanne L. Harvey, Peta J. Craik, David J. Spincemaille, Pieter Cassiman, David Braem, Annabel Vleugels, Jozef Nibbering, Peter H. Drijfhout, Jan Wouter De Coninck, Barbara Cammue, Bruno P. A. Thevissen, Karin PLoS One Research Article Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel β-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment) of 11.00 ± 1.70 μM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 μM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 μM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development. Public Library of Science 2015-08-06 /pmc/articles/PMC4527839/ /pubmed/26248029 http://dx.doi.org/10.1371/journal.pone.0132701 Text en © 2015 Vriens et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Vriens, Kim Cools, Tanne L. Harvey, Peta J. Craik, David J. Spincemaille, Pieter Cassiman, David Braem, Annabel Vleugels, Jozef Nibbering, Peter H. Drijfhout, Jan Wouter De Coninck, Barbara Cammue, Bruno P. A. Thevissen, Karin Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures |
title | Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures |
title_full | Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures |
title_fullStr | Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures |
title_full_unstemmed | Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures |
title_short | Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures |
title_sort | synergistic activity of the plant defensin hsafp1 and caspofungin against candida albicans biofilms and planktonic cultures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527839/ https://www.ncbi.nlm.nih.gov/pubmed/26248029 http://dx.doi.org/10.1371/journal.pone.0132701 |
work_keys_str_mv | AT vrienskim synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT coolstannel synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT harveypetaj synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT craikdavidj synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT spincemaillepieter synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT cassimandavid synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT braemannabel synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT vleugelsjozef synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT nibberingpeterh synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT drijfhoutjanwouter synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT deconinckbarbara synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT cammuebrunopa synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures AT thevissenkarin synergisticactivityoftheplantdefensinhsafp1andcaspofunginagainstcandidaalbicansbiofilmsandplanktoniccultures |