Cargando…
Using Bayesian Multilevel Whole Genome Regression Models for Partial Pooling of Training Sets in Genomic Prediction
Training set size is an important determinant of genomic prediction accuracy. Plant breeding programs are characterized by a high degree of structuring, particularly into populations. This hampers the establishment of large training sets for each population. Pooling populations increases training se...
Autores principales: | Technow, Frank, Totir, L. Radu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528317/ https://www.ncbi.nlm.nih.gov/pubmed/26024866 http://dx.doi.org/10.1534/g3.115.019299 |
Ejemplares similares
-
Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation
por: Technow, Frank, et al.
Publicado: (2015) -
Use of F2 Bulks in Training Sets for Genomic Prediction of Combining Ability and Hybrid Performance
por: Technow, Frank
Publicado: (2019) -
Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
por: Montesinos-López, Osval A., et al.
Publicado: (2015) -
A Bayesian Genomic Regression Model with Skew Normal Random Errors
por: Pérez-Rodríguez, Paulino, et al.
Publicado: (2018) -
Bayesian Genomic-Enabled Prediction as an Inverse Problem
por: Cuevas, Jaime, et al.
Publicado: (2014)