Cargando…
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528587/ https://www.ncbi.nlm.nih.gov/pubmed/26063822 http://dx.doi.org/10.1098/rsif.2015.0233 |
_version_ | 1782384689089085440 |
---|---|
author | Liao, Shuohao Vejchodský, Tomáš Erban, Radek |
author_facet | Liao, Shuohao Vejchodský, Tomáš Erban, Radek |
author_sort | Liao, Shuohao |
collection | PubMed |
description | Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. |
format | Online Article Text |
id | pubmed-4528587 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-45285872015-08-12 Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks Liao, Shuohao Vejchodský, Tomáš Erban, Radek J R Soc Interface Research Articles Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. The Royal Society 2015-07-06 /pmc/articles/PMC4528587/ /pubmed/26063822 http://dx.doi.org/10.1098/rsif.2015.0233 Text en http://creativecommons.org/licenses/by/4.0/ © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Liao, Shuohao Vejchodský, Tomáš Erban, Radek Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks |
title | Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks |
title_full | Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks |
title_fullStr | Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks |
title_full_unstemmed | Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks |
title_short | Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks |
title_sort | tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528587/ https://www.ncbi.nlm.nih.gov/pubmed/26063822 http://dx.doi.org/10.1098/rsif.2015.0233 |
work_keys_str_mv | AT liaoshuohao tensormethodsforparameterestimationandbifurcationanalysisofstochasticreactionnetworks AT vejchodskytomas tensormethodsforparameterestimationandbifurcationanalysisofstochasticreactionnetworks AT erbanradek tensormethodsforparameterestimationandbifurcationanalysisofstochasticreactionnetworks |