Cargando…

Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks

Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another d...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Shuohao, Vejchodský, Tomáš, Erban, Radek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528587/
https://www.ncbi.nlm.nih.gov/pubmed/26063822
http://dx.doi.org/10.1098/rsif.2015.0233
_version_ 1782384689089085440
author Liao, Shuohao
Vejchodský, Tomáš
Erban, Radek
author_facet Liao, Shuohao
Vejchodský, Tomáš
Erban, Radek
author_sort Liao, Shuohao
collection PubMed
description Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.
format Online
Article
Text
id pubmed-4528587
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-45285872015-08-12 Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks Liao, Shuohao Vejchodský, Tomáš Erban, Radek J R Soc Interface Research Articles Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. The Royal Society 2015-07-06 /pmc/articles/PMC4528587/ /pubmed/26063822 http://dx.doi.org/10.1098/rsif.2015.0233 Text en http://creativecommons.org/licenses/by/4.0/ © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Research Articles
Liao, Shuohao
Vejchodský, Tomáš
Erban, Radek
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
title Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
title_full Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
title_fullStr Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
title_full_unstemmed Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
title_short Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
title_sort tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528587/
https://www.ncbi.nlm.nih.gov/pubmed/26063822
http://dx.doi.org/10.1098/rsif.2015.0233
work_keys_str_mv AT liaoshuohao tensormethodsforparameterestimationandbifurcationanalysisofstochasticreactionnetworks
AT vejchodskytomas tensormethodsforparameterestimationandbifurcationanalysisofstochasticreactionnetworks
AT erbanradek tensormethodsforparameterestimationandbifurcationanalysisofstochasticreactionnetworks