Cargando…
Applying stability selection to consistently estimate sparse principal components in high-dimensional molecular data
Motivation: Principal component analysis (PCA) is a basic tool often used in bioinformatics for visualization and dimension reduction. However, it is known that PCA may not consistently estimate the true direction of maximal variability in high-dimensional, low sample size settings, which are typica...
Autores principales: | Sill, Martin, Saadati, Maral, Benner, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528629/ https://www.ncbi.nlm.nih.gov/pubmed/25861969 http://dx.doi.org/10.1093/bioinformatics/btv197 |
Ejemplares similares
-
Stochastic convex sparse principal component analysis
por: Baytas, Inci M., et al.
Publicado: (2016) -
An efficient classification method based on principal component and sparse representation
por: Zhai, Lin, et al.
Publicado: (2016) -
Craniofacial similarity analysis through sparse principal component analysis
por: Zhao, Junli, et al.
Publicado: (2017) -
Super-sparse principal component analyses for high-throughput genomic data
por: Lee, Donghwan, et al.
Publicado: (2010) -
Segmentation of High Dimensional Time-Series Data Using Mixture of Sparse Principal Component Regression Model with Information Complexity
por: Sun, Yaojin, et al.
Publicado: (2020)