Cargando…
Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain
BACKGROUND: Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce opt...
Autores principales: | Yang, Bingxin, Yuan, Min, Ma, Yide, Zhang, Jiuwen, Zhan, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528851/ https://www.ncbi.nlm.nih.gov/pubmed/26253135 http://dx.doi.org/10.1186/s12880-015-0065-0 |
Ejemplares similares
-
Curvelet Transform-Based Sparsity Promoting Algorithm for Fast Ultrasound Localization Microscopy
por: You, Qi, et al.
Publicado: (2022) -
Segmentation of Online Ferrograph Images with Strong Interference Based on Uniform Discrete Curvelet Transformation†
por: Han, Leng, et al.
Publicado: (2019) -
Digital watermarking techniques in curvelet and ridgelet domain
por: Rao, Channapragada Rama Seshagiri, et al.
Publicado: (2016) -
Compressed sensing cardiac MRI exploiting spatio-temporal sparsity
por: Zamani, Jafar, et al.
Publicado: (2013) -
Image Compressive Sensing via Hybrid Nonlocal Sparsity Regularization
por: Li, Lizhao, et al.
Publicado: (2020)