Cargando…

Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord

Recently, we found that gentle mechanical skin stimulation inhibits the micturition reflex in anesthetized rats. However, the central mechanisms underlying this inhibition have not been determined. This study aimed to clarify the central neural mechanisms underlying this inhibitory effect. In uretha...

Descripción completa

Detalles Bibliográficos
Autores principales: Hotta, Harumi, Watanabe, Nobuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529237/
https://www.ncbi.nlm.nih.gov/pubmed/26252000
http://dx.doi.org/10.1371/journal.pone.0135185
_version_ 1782384767897960448
author Hotta, Harumi
Watanabe, Nobuhiro
author_facet Hotta, Harumi
Watanabe, Nobuhiro
author_sort Hotta, Harumi
collection PubMed
description Recently, we found that gentle mechanical skin stimulation inhibits the micturition reflex in anesthetized rats. However, the central mechanisms underlying this inhibition have not been determined. This study aimed to clarify the central neural mechanisms underlying this inhibitory effect. In urethane-anesthetized rats, cutaneous stimuli were applied for 1 min to the skin of the perineum using an elastic polymer roller with a smooth, soft surface. Inhibition of rhythmic micturition contractions by perineal stimulation was abolished by naloxone, an antagonist of opioidergic receptors, administered into the intrathecal space of the lumbosacral spinal cord at doses of 2–20 μg but was not affected by the same doses of naloxone administered into the subarachnoid space of the cisterna magna. Next, we examined whether perineal rolling stimulation inhibited the descending and ascending limbs of the micturition reflex. Perineal rolling stimulation inhibited bladder contractions induced by electrical stimulation of the pontine micturition center (PMC) or the descending tract of the micturition reflex pathway. It also inhibited the bladder distension-induced increase in the blood flow of the dorsal cord at L5–S1, reflecting the neural activity of this area, as well as pelvic afferent-evoked field potentials in the dorsal commissure at the lumbosacral level; these areas contain long ascending neurons to the PMC. Neuronal activities in this center were also inhibited by the rolling stimulation. These results suggest that the perineal rolling stimulation activates the spinal opioidergic system and inhibits both ascending and descending transmissions of the micturition reflex pathway in the spinal cord. These inhibitions would lead to the shutting down of positive feedback between the bladder and the PMC, resulting in inhibition of the micturition reflex. Based on the central neural mechanisms we show here, gentle perineal stimulation may be applicable to several different types of overactive bladder.
format Online
Article
Text
id pubmed-4529237
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-45292372015-08-12 Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord Hotta, Harumi Watanabe, Nobuhiro PLoS One Research Article Recently, we found that gentle mechanical skin stimulation inhibits the micturition reflex in anesthetized rats. However, the central mechanisms underlying this inhibition have not been determined. This study aimed to clarify the central neural mechanisms underlying this inhibitory effect. In urethane-anesthetized rats, cutaneous stimuli were applied for 1 min to the skin of the perineum using an elastic polymer roller with a smooth, soft surface. Inhibition of rhythmic micturition contractions by perineal stimulation was abolished by naloxone, an antagonist of opioidergic receptors, administered into the intrathecal space of the lumbosacral spinal cord at doses of 2–20 μg but was not affected by the same doses of naloxone administered into the subarachnoid space of the cisterna magna. Next, we examined whether perineal rolling stimulation inhibited the descending and ascending limbs of the micturition reflex. Perineal rolling stimulation inhibited bladder contractions induced by electrical stimulation of the pontine micturition center (PMC) or the descending tract of the micturition reflex pathway. It also inhibited the bladder distension-induced increase in the blood flow of the dorsal cord at L5–S1, reflecting the neural activity of this area, as well as pelvic afferent-evoked field potentials in the dorsal commissure at the lumbosacral level; these areas contain long ascending neurons to the PMC. Neuronal activities in this center were also inhibited by the rolling stimulation. These results suggest that the perineal rolling stimulation activates the spinal opioidergic system and inhibits both ascending and descending transmissions of the micturition reflex pathway in the spinal cord. These inhibitions would lead to the shutting down of positive feedback between the bladder and the PMC, resulting in inhibition of the micturition reflex. Based on the central neural mechanisms we show here, gentle perineal stimulation may be applicable to several different types of overactive bladder. Public Library of Science 2015-08-07 /pmc/articles/PMC4529237/ /pubmed/26252000 http://dx.doi.org/10.1371/journal.pone.0135185 Text en © 2015 Hotta, Watanabe http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Hotta, Harumi
Watanabe, Nobuhiro
Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord
title Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord
title_full Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord
title_fullStr Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord
title_full_unstemmed Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord
title_short Gentle Mechanical Skin Stimulation Inhibits Micturition Contractions via the Spinal Opioidergic System and by Decreasing Both Ascending and Descending Transmissions of the Micturition Reflex in the Spinal Cord
title_sort gentle mechanical skin stimulation inhibits micturition contractions via the spinal opioidergic system and by decreasing both ascending and descending transmissions of the micturition reflex in the spinal cord
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529237/
https://www.ncbi.nlm.nih.gov/pubmed/26252000
http://dx.doi.org/10.1371/journal.pone.0135185
work_keys_str_mv AT hottaharumi gentlemechanicalskinstimulationinhibitsmicturitioncontractionsviathespinalopioidergicsystemandbydecreasingbothascendinganddescendingtransmissionsofthemicturitionreflexinthespinalcord
AT watanabenobuhiro gentlemechanicalskinstimulationinhibitsmicturitioncontractionsviathespinalopioidergicsystemandbydecreasingbothascendinganddescendingtransmissionsofthemicturitionreflexinthespinalcord