Cargando…

Engineering soya bean seeds as a scalable platform to produce cyanovirin‐N, a non‐ARV microbicide against HIV

There is an urgent need to provide effective anti‐HIV microbicides to resource‐poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production...

Descripción completa

Detalles Bibliográficos
Autores principales: O'Keefe, Barry R., Murad, André M., Vianna, Giovanni R., Ramessar, Koreen, Saucedo, Carrie J., Wilson, Jennifer, Buckheit, Karen W., da Cunha, Nicolau B., Araújo, Ana Claudia G., Lacorte, Cristiano C., Madeira, Luisa, McMahon, James B., Rech, Elibio L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529388/
https://www.ncbi.nlm.nih.gov/pubmed/25572960
http://dx.doi.org/10.1111/pbi.12309
Descripción
Sumario:There is an urgent need to provide effective anti‐HIV microbicides to resource‐poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin‐N (rCV‐N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV‐N was isolated with a yield of 350 μg/g of dry seed weight. The observed amino acid sequence of rCV‐N matched the expected sequence of native CV‐N, as did the mass of rCV‐N (11 009 Da). Purified rCV‐N from soya is active in anti‐HIV assays with an EC(50) of 0.82–2.7 nM (compared to 0.45–1.8 nM for E. coli‐produced CV‐N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV‐N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti‐HIV microbicide development.