Cargando…

Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries

The semi-solid flow battery (SSFB) is a promising storage energy technology featured by employing semi-solid fluid electrodes containing conductive additive and active Li-ion battery materials. The state of art anode material for SSFB is Li(4)Ti(5)O(12) (LTO). This work shows that LTO improves drast...

Descripción completa

Detalles Bibliográficos
Autores principales: Ventosa, Edgar, Skoumal, Marcel, Vazquez, Francisco Javier, Flox, Cristina, Arbiol, Jordi, Morante, Joan Ramon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529663/
https://www.ncbi.nlm.nih.gov/pubmed/25892099
http://dx.doi.org/10.1002/cssc.201500349
_version_ 1782384813121994752
author Ventosa, Edgar
Skoumal, Marcel
Vazquez, Francisco Javier
Flox, Cristina
Arbiol, Jordi
Morante, Joan Ramon
author_facet Ventosa, Edgar
Skoumal, Marcel
Vazquez, Francisco Javier
Flox, Cristina
Arbiol, Jordi
Morante, Joan Ramon
author_sort Ventosa, Edgar
collection PubMed
description The semi-solid flow battery (SSFB) is a promising storage energy technology featured by employing semi-solid fluid electrodes containing conductive additive and active Li-ion battery materials. The state of art anode material for SSFB is Li(4)Ti(5)O(12) (LTO). This work shows that LTO improves drastically the performance in fluid electrode via hydrogen annealing manifesting the importance of the electrical conductivity of the active material in SSFBs. On the other hand, the properties of fluid electrodes allow the contributions of ionic and electrical resistance to be separated in operando. The asymmetric overpotential observed in Li(4)Ti(5)O(12) and TiO(2) is proposed to originate from the so-called electron bottleneck mechanism based on the transformation from electrically insulator to conductor upon (de-)lithiation, or vice versa, which should be considered when modelling, evaluating or designing advanced materials based on Li(4)Ti(5)O(12), TiO(2) or others with insulating-conducting behavior materials.
format Online
Article
Text
id pubmed-4529663
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher WILEY-VCH Verlag
record_format MEDLINE/PubMed
spelling pubmed-45296632015-08-13 Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries Ventosa, Edgar Skoumal, Marcel Vazquez, Francisco Javier Flox, Cristina Arbiol, Jordi Morante, Joan Ramon ChemSusChem Full Papers The semi-solid flow battery (SSFB) is a promising storage energy technology featured by employing semi-solid fluid electrodes containing conductive additive and active Li-ion battery materials. The state of art anode material for SSFB is Li(4)Ti(5)O(12) (LTO). This work shows that LTO improves drastically the performance in fluid electrode via hydrogen annealing manifesting the importance of the electrical conductivity of the active material in SSFBs. On the other hand, the properties of fluid electrodes allow the contributions of ionic and electrical resistance to be separated in operando. The asymmetric overpotential observed in Li(4)Ti(5)O(12) and TiO(2) is proposed to originate from the so-called electron bottleneck mechanism based on the transformation from electrically insulator to conductor upon (de-)lithiation, or vice versa, which should be considered when modelling, evaluating or designing advanced materials based on Li(4)Ti(5)O(12), TiO(2) or others with insulating-conducting behavior materials. WILEY-VCH Verlag 2015-05-22 2015-04-17 /pmc/articles/PMC4529663/ /pubmed/25892099 http://dx.doi.org/10.1002/cssc.201500349 Text en © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. https://creativecommons.org/licenses/by-nc-nd/4.0/ © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Full Papers
Ventosa, Edgar
Skoumal, Marcel
Vazquez, Francisco Javier
Flox, Cristina
Arbiol, Jordi
Morante, Joan Ramon
Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries
title Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries
title_full Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries
title_fullStr Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries
title_full_unstemmed Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries
title_short Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries
title_sort electron bottleneck in the charge/discharge mechanism of lithium titanates for batteries
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529663/
https://www.ncbi.nlm.nih.gov/pubmed/25892099
http://dx.doi.org/10.1002/cssc.201500349
work_keys_str_mv AT ventosaedgar electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries
AT skoumalmarcel electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries
AT vazquezfranciscojavier electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries
AT floxcristina electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries
AT arbioljordi electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries
AT morantejoanramon electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries