Cargando…
Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries
The semi-solid flow battery (SSFB) is a promising storage energy technology featured by employing semi-solid fluid electrodes containing conductive additive and active Li-ion battery materials. The state of art anode material for SSFB is Li(4)Ti(5)O(12) (LTO). This work shows that LTO improves drast...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY-VCH Verlag
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529663/ https://www.ncbi.nlm.nih.gov/pubmed/25892099 http://dx.doi.org/10.1002/cssc.201500349 |
_version_ | 1782384813121994752 |
---|---|
author | Ventosa, Edgar Skoumal, Marcel Vazquez, Francisco Javier Flox, Cristina Arbiol, Jordi Morante, Joan Ramon |
author_facet | Ventosa, Edgar Skoumal, Marcel Vazquez, Francisco Javier Flox, Cristina Arbiol, Jordi Morante, Joan Ramon |
author_sort | Ventosa, Edgar |
collection | PubMed |
description | The semi-solid flow battery (SSFB) is a promising storage energy technology featured by employing semi-solid fluid electrodes containing conductive additive and active Li-ion battery materials. The state of art anode material for SSFB is Li(4)Ti(5)O(12) (LTO). This work shows that LTO improves drastically the performance in fluid electrode via hydrogen annealing manifesting the importance of the electrical conductivity of the active material in SSFBs. On the other hand, the properties of fluid electrodes allow the contributions of ionic and electrical resistance to be separated in operando. The asymmetric overpotential observed in Li(4)Ti(5)O(12) and TiO(2) is proposed to originate from the so-called electron bottleneck mechanism based on the transformation from electrically insulator to conductor upon (de-)lithiation, or vice versa, which should be considered when modelling, evaluating or designing advanced materials based on Li(4)Ti(5)O(12), TiO(2) or others with insulating-conducting behavior materials. |
format | Online Article Text |
id | pubmed-4529663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | WILEY-VCH Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-45296632015-08-13 Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries Ventosa, Edgar Skoumal, Marcel Vazquez, Francisco Javier Flox, Cristina Arbiol, Jordi Morante, Joan Ramon ChemSusChem Full Papers The semi-solid flow battery (SSFB) is a promising storage energy technology featured by employing semi-solid fluid electrodes containing conductive additive and active Li-ion battery materials. The state of art anode material for SSFB is Li(4)Ti(5)O(12) (LTO). This work shows that LTO improves drastically the performance in fluid electrode via hydrogen annealing manifesting the importance of the electrical conductivity of the active material in SSFBs. On the other hand, the properties of fluid electrodes allow the contributions of ionic and electrical resistance to be separated in operando. The asymmetric overpotential observed in Li(4)Ti(5)O(12) and TiO(2) is proposed to originate from the so-called electron bottleneck mechanism based on the transformation from electrically insulator to conductor upon (de-)lithiation, or vice versa, which should be considered when modelling, evaluating or designing advanced materials based on Li(4)Ti(5)O(12), TiO(2) or others with insulating-conducting behavior materials. WILEY-VCH Verlag 2015-05-22 2015-04-17 /pmc/articles/PMC4529663/ /pubmed/25892099 http://dx.doi.org/10.1002/cssc.201500349 Text en © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. https://creativecommons.org/licenses/by-nc-nd/4.0/ © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Full Papers Ventosa, Edgar Skoumal, Marcel Vazquez, Francisco Javier Flox, Cristina Arbiol, Jordi Morante, Joan Ramon Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries |
title | Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries |
title_full | Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries |
title_fullStr | Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries |
title_full_unstemmed | Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries |
title_short | Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries |
title_sort | electron bottleneck in the charge/discharge mechanism of lithium titanates for batteries |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529663/ https://www.ncbi.nlm.nih.gov/pubmed/25892099 http://dx.doi.org/10.1002/cssc.201500349 |
work_keys_str_mv | AT ventosaedgar electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries AT skoumalmarcel electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries AT vazquezfranciscojavier electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries AT floxcristina electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries AT arbioljordi electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries AT morantejoanramon electronbottleneckinthechargedischargemechanismoflithiumtitanatesforbatteries |