Cargando…
Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact
INTRODUCTION: Crohn’s disease (CD) is a disabling chronic enteropathy sustained by a harmful T-cell response toward antigens of the gut microbiota in genetically susceptible subjects. Growing evidence highlights the safety and possible efficacy of mesenchymal stem cells (MSCs) as a new therapeutic t...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529692/ https://www.ncbi.nlm.nih.gov/pubmed/26206376 http://dx.doi.org/10.1186/s13287-015-0122-1 |
_version_ | 1782384818525306880 |
---|---|
author | Ciccocioppo, Rachele Cangemi, Giuseppina C. Kruzliak, Peter Gallia, Alessandra Betti, Elena Badulli, Carla Martinetti, Miryam Cervio, Marila Pecci, Alessandro Bozzi, Valeria Dionigi, Paolo Visai, Livia Gurrado, Antonella Alvisi, Costanza Picone, Cristina Monti, Manuela Bernardo, Maria E. Gobbi, Paolo Corazza, Gino R. |
author_facet | Ciccocioppo, Rachele Cangemi, Giuseppina C. Kruzliak, Peter Gallia, Alessandra Betti, Elena Badulli, Carla Martinetti, Miryam Cervio, Marila Pecci, Alessandro Bozzi, Valeria Dionigi, Paolo Visai, Livia Gurrado, Antonella Alvisi, Costanza Picone, Cristina Monti, Manuela Bernardo, Maria E. Gobbi, Paolo Corazza, Gino R. |
author_sort | Ciccocioppo, Rachele |
collection | PubMed |
description | INTRODUCTION: Crohn’s disease (CD) is a disabling chronic enteropathy sustained by a harmful T-cell response toward antigens of the gut microbiota in genetically susceptible subjects. Growing evidence highlights the safety and possible efficacy of mesenchymal stem cells (MSCs) as a new therapeutic tool for this condition. Therefore, we aimed to investigate the effects of bone marrow-derived MSCs on pathogenic T cells with a view to clinical application. METHODS: T-cell lines from both inflamed and non-inflamed colonic mucosal specimens of CD patients and from healthy mucosa of control subjects were grown with the antigen muramyl-dipeptide in the absence or presence of donors’ MSCs. The MSC effects were evaluated in terms of T-cell viability, apoptotic rate, proliferative response, immunophenotype, and cytokine profile. The role of the indoleamine 2,3-dioxygenase (IDO) was established by adding a specific inhibitor, the 1-methyl-DL-tryptophan, and by using MSCs transfected with the small interfering RNA (siRNA) targeting IDO. The relevance of cell-cell contact was evaluated by applying transwell membranes. RESULTS: A significant reduction in both cell viability and proliferative response to muramyl-dipeptide, with simultaneous increase in the apoptotic rate, was found in T cells from both inflamed and non-inflamed CD mucosa when co-cultured with MSCs and was reverted by inhibiting IDO activity and expression. A reduction of the activated CD4(+)CD25(+) subset and increase of the CD3(+)CD69(+) population were also observed when T-cell lines from CD mucosa were co-cultured with MSCs. In parallel, an inhibitory effect was evident on the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interferon-γ, interleukin-17A and -21, whereas that of the transforming growth factor-β and interleukin-6 were increased, and production of the tolerogenic molecule soluble HLA-G was high. These latter effects were almost completely eliminated by blocking the IDO, whose activity was upregulated in MSCs co-cultured with CD T cells. The use of a semipermeable membrane partially inhibited the MSC immunosuppressive effects. Finally, hardly any effects of MSCs were observed when T cells obtained from control subjects were used. CONCLUSION: MSCs exert potent immunomodulant effects on antigen-specific T cells in CD through a complex paracrine and cell-cell contact-mediated action, which may be exploited for widespread therapeutic use. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-015-0122-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4529692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45296922015-08-09 Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact Ciccocioppo, Rachele Cangemi, Giuseppina C. Kruzliak, Peter Gallia, Alessandra Betti, Elena Badulli, Carla Martinetti, Miryam Cervio, Marila Pecci, Alessandro Bozzi, Valeria Dionigi, Paolo Visai, Livia Gurrado, Antonella Alvisi, Costanza Picone, Cristina Monti, Manuela Bernardo, Maria E. Gobbi, Paolo Corazza, Gino R. Stem Cell Res Ther Research INTRODUCTION: Crohn’s disease (CD) is a disabling chronic enteropathy sustained by a harmful T-cell response toward antigens of the gut microbiota in genetically susceptible subjects. Growing evidence highlights the safety and possible efficacy of mesenchymal stem cells (MSCs) as a new therapeutic tool for this condition. Therefore, we aimed to investigate the effects of bone marrow-derived MSCs on pathogenic T cells with a view to clinical application. METHODS: T-cell lines from both inflamed and non-inflamed colonic mucosal specimens of CD patients and from healthy mucosa of control subjects were grown with the antigen muramyl-dipeptide in the absence or presence of donors’ MSCs. The MSC effects were evaluated in terms of T-cell viability, apoptotic rate, proliferative response, immunophenotype, and cytokine profile. The role of the indoleamine 2,3-dioxygenase (IDO) was established by adding a specific inhibitor, the 1-methyl-DL-tryptophan, and by using MSCs transfected with the small interfering RNA (siRNA) targeting IDO. The relevance of cell-cell contact was evaluated by applying transwell membranes. RESULTS: A significant reduction in both cell viability and proliferative response to muramyl-dipeptide, with simultaneous increase in the apoptotic rate, was found in T cells from both inflamed and non-inflamed CD mucosa when co-cultured with MSCs and was reverted by inhibiting IDO activity and expression. A reduction of the activated CD4(+)CD25(+) subset and increase of the CD3(+)CD69(+) population were also observed when T-cell lines from CD mucosa were co-cultured with MSCs. In parallel, an inhibitory effect was evident on the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interferon-γ, interleukin-17A and -21, whereas that of the transforming growth factor-β and interleukin-6 were increased, and production of the tolerogenic molecule soluble HLA-G was high. These latter effects were almost completely eliminated by blocking the IDO, whose activity was upregulated in MSCs co-cultured with CD T cells. The use of a semipermeable membrane partially inhibited the MSC immunosuppressive effects. Finally, hardly any effects of MSCs were observed when T cells obtained from control subjects were used. CONCLUSION: MSCs exert potent immunomodulant effects on antigen-specific T cells in CD through a complex paracrine and cell-cell contact-mediated action, which may be exploited for widespread therapeutic use. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-015-0122-1) contains supplementary material, which is available to authorized users. BioMed Central 2015-07-24 /pmc/articles/PMC4529692/ /pubmed/26206376 http://dx.doi.org/10.1186/s13287-015-0122-1 Text en © Ciccocioppo et al. 2015 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Ciccocioppo, Rachele Cangemi, Giuseppina C. Kruzliak, Peter Gallia, Alessandra Betti, Elena Badulli, Carla Martinetti, Miryam Cervio, Marila Pecci, Alessandro Bozzi, Valeria Dionigi, Paolo Visai, Livia Gurrado, Antonella Alvisi, Costanza Picone, Cristina Monti, Manuela Bernardo, Maria E. Gobbi, Paolo Corazza, Gino R. Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact |
title | Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact |
title_full | Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact |
title_fullStr | Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact |
title_full_unstemmed | Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact |
title_short | Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn’s disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact |
title_sort | ex vivo immunosuppressive effects of mesenchymal stem cells on crohn’s disease mucosal t cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529692/ https://www.ncbi.nlm.nih.gov/pubmed/26206376 http://dx.doi.org/10.1186/s13287-015-0122-1 |
work_keys_str_mv | AT ciccociopporachele exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT cangemigiuseppinac exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT kruzliakpeter exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT galliaalessandra exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT bettielena exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT badullicarla exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT martinettimiryam exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT cerviomarila exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT peccialessandro exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT bozzivaleria exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT dionigipaolo exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT visailivia exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT gurradoantonella exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT alvisicostanza exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT piconecristina exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT montimanuela exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT bernardomariae exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT gobbipaolo exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact AT corazzaginor exvivoimmunosuppressiveeffectsofmesenchymalstemcellsoncrohnsdiseasemucosaltcellsarelargelydependentonindoleamine23dioxygenaseactivityandcellcellcontact |