Cargando…
Low-Rank and Sparse Matrix Decomposition for Genetic Interaction Data
Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic inter...
Autores principales: | Wang, Yishu, Yang, Dejie, Deng, Minghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529927/ https://www.ncbi.nlm.nih.gov/pubmed/26273633 http://dx.doi.org/10.1155/2015/573956 |
Ejemplares similares
-
Handbook of robust low-rank and sparse matrix decomposition: applications in image and video processing
por: Bouwmans, Thierry, et al.
Publicado: (2016) -
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
por: Gou, Shuiping, et al.
Publicado: (2013) -
Clutter suppression in ultrasound: performance evaluation and review of low-rank and sparse matrix decomposition methods
por: Zhang, Naiyuan, et al.
Publicado: (2020) -
Low-Rank and Sparse Decomposition Model for Accelerating Dynamic MRI Reconstruction
por: Chen, Junbo, et al.
Publicado: (2017) -
Low-Rank Plus Sparse Decomposition of fMRI Data With Application to Alzheimer's Disease
por: Tu, Wei, et al.
Publicado: (2022)