Cargando…

Bottom-up assembly of metallic germanium

Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated las...

Descripción completa

Detalles Bibliográficos
Autores principales: Scappucci, Giordano, Klesse, Wolfgang M., Yeoh, LaReine A., Carter, Damien J., Warschkow, Oliver, Marks, Nigel A., Jaeger, David L., Capellini, Giovanni, Simmons, Michelle Y., Hamilton, Alexander R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530340/
https://www.ncbi.nlm.nih.gov/pubmed/26256239
http://dx.doi.org/10.1038/srep12948
_version_ 1782384897993736192
author Scappucci, Giordano
Klesse, Wolfgang M.
Yeoh, LaReine A.
Carter, Damien J.
Warschkow, Oliver
Marks, Nigel A.
Jaeger, David L.
Capellini, Giovanni
Simmons, Michelle Y.
Hamilton, Alexander R.
author_facet Scappucci, Giordano
Klesse, Wolfgang M.
Yeoh, LaReine A.
Carter, Damien J.
Warschkow, Oliver
Marks, Nigel A.
Jaeger, David L.
Capellini, Giovanni
Simmons, Michelle Y.
Hamilton, Alexander R.
author_sort Scappucci, Giordano
collection PubMed
description Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(−3)) low-resistivity (10(−4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.
format Online
Article
Text
id pubmed-4530340
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-45303402015-08-11 Bottom-up assembly of metallic germanium Scappucci, Giordano Klesse, Wolfgang M. Yeoh, LaReine A. Carter, Damien J. Warschkow, Oliver Marks, Nigel A. Jaeger, David L. Capellini, Giovanni Simmons, Michelle Y. Hamilton, Alexander R. Sci Rep Article Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(−3)) low-resistivity (10(−4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory. Nature Publishing Group 2015-08-10 /pmc/articles/PMC4530340/ /pubmed/26256239 http://dx.doi.org/10.1038/srep12948 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Scappucci, Giordano
Klesse, Wolfgang M.
Yeoh, LaReine A.
Carter, Damien J.
Warschkow, Oliver
Marks, Nigel A.
Jaeger, David L.
Capellini, Giovanni
Simmons, Michelle Y.
Hamilton, Alexander R.
Bottom-up assembly of metallic germanium
title Bottom-up assembly of metallic germanium
title_full Bottom-up assembly of metallic germanium
title_fullStr Bottom-up assembly of metallic germanium
title_full_unstemmed Bottom-up assembly of metallic germanium
title_short Bottom-up assembly of metallic germanium
title_sort bottom-up assembly of metallic germanium
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530340/
https://www.ncbi.nlm.nih.gov/pubmed/26256239
http://dx.doi.org/10.1038/srep12948
work_keys_str_mv AT scappuccigiordano bottomupassemblyofmetallicgermanium
AT klessewolfgangm bottomupassemblyofmetallicgermanium
AT yeohlareinea bottomupassemblyofmetallicgermanium
AT carterdamienj bottomupassemblyofmetallicgermanium
AT warschkowoliver bottomupassemblyofmetallicgermanium
AT marksnigela bottomupassemblyofmetallicgermanium
AT jaegerdavidl bottomupassemblyofmetallicgermanium
AT capellinigiovanni bottomupassemblyofmetallicgermanium
AT simmonsmichelley bottomupassemblyofmetallicgermanium
AT hamiltonalexanderr bottomupassemblyofmetallicgermanium