Cargando…
Bottom-up assembly of metallic germanium
Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated las...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530340/ https://www.ncbi.nlm.nih.gov/pubmed/26256239 http://dx.doi.org/10.1038/srep12948 |
_version_ | 1782384897993736192 |
---|---|
author | Scappucci, Giordano Klesse, Wolfgang M. Yeoh, LaReine A. Carter, Damien J. Warschkow, Oliver Marks, Nigel A. Jaeger, David L. Capellini, Giovanni Simmons, Michelle Y. Hamilton, Alexander R. |
author_facet | Scappucci, Giordano Klesse, Wolfgang M. Yeoh, LaReine A. Carter, Damien J. Warschkow, Oliver Marks, Nigel A. Jaeger, David L. Capellini, Giovanni Simmons, Michelle Y. Hamilton, Alexander R. |
author_sort | Scappucci, Giordano |
collection | PubMed |
description | Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(−3)) low-resistivity (10(−4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory. |
format | Online Article Text |
id | pubmed-4530340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-45303402015-08-11 Bottom-up assembly of metallic germanium Scappucci, Giordano Klesse, Wolfgang M. Yeoh, LaReine A. Carter, Damien J. Warschkow, Oliver Marks, Nigel A. Jaeger, David L. Capellini, Giovanni Simmons, Michelle Y. Hamilton, Alexander R. Sci Rep Article Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(−3)) low-resistivity (10(−4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory. Nature Publishing Group 2015-08-10 /pmc/articles/PMC4530340/ /pubmed/26256239 http://dx.doi.org/10.1038/srep12948 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Scappucci, Giordano Klesse, Wolfgang M. Yeoh, LaReine A. Carter, Damien J. Warschkow, Oliver Marks, Nigel A. Jaeger, David L. Capellini, Giovanni Simmons, Michelle Y. Hamilton, Alexander R. Bottom-up assembly of metallic germanium |
title | Bottom-up assembly of metallic germanium |
title_full | Bottom-up assembly of metallic germanium |
title_fullStr | Bottom-up assembly of metallic germanium |
title_full_unstemmed | Bottom-up assembly of metallic germanium |
title_short | Bottom-up assembly of metallic germanium |
title_sort | bottom-up assembly of metallic germanium |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530340/ https://www.ncbi.nlm.nih.gov/pubmed/26256239 http://dx.doi.org/10.1038/srep12948 |
work_keys_str_mv | AT scappuccigiordano bottomupassemblyofmetallicgermanium AT klessewolfgangm bottomupassemblyofmetallicgermanium AT yeohlareinea bottomupassemblyofmetallicgermanium AT carterdamienj bottomupassemblyofmetallicgermanium AT warschkowoliver bottomupassemblyofmetallicgermanium AT marksnigela bottomupassemblyofmetallicgermanium AT jaegerdavidl bottomupassemblyofmetallicgermanium AT capellinigiovanni bottomupassemblyofmetallicgermanium AT simmonsmichelley bottomupassemblyofmetallicgermanium AT hamiltonalexanderr bottomupassemblyofmetallicgermanium |