Cargando…
Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis
INTRODUCTION: Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofron...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530897/ https://www.ncbi.nlm.nih.gov/pubmed/26258487 http://dx.doi.org/10.1371/journal.pone.0135424 |
_version_ | 1782384950205480960 |
---|---|
author | Demanuele, Charmaine Kirsch, Peter Esslinger, Christine Zink, Mathias Meyer-Lindenberg, Andreas Durstewitz, Daniel |
author_facet | Demanuele, Charmaine Kirsch, Peter Esslinger, Christine Zink, Mathias Meyer-Lindenberg, Andreas Durstewitz, Daniel |
author_sort | Demanuele, Charmaine |
collection | PubMed |
description | INTRODUCTION: Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a “Jumping to Conclusions” probabilistic reasoning task. METHODS: We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages. RESULTS: Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices) all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information), while for prefrontal areas a wider multivariate pattern of activity was maximally informative. CONCLUSIONS/SIGNIFICANCE: We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable tool to assess how area-specific processing is altered in psychiatric disorders such as schizophrenia, and in healthy subjects carrying different genetic polymorphisms. |
format | Online Article Text |
id | pubmed-4530897 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45308972015-08-24 Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis Demanuele, Charmaine Kirsch, Peter Esslinger, Christine Zink, Mathias Meyer-Lindenberg, Andreas Durstewitz, Daniel PLoS One Research Article INTRODUCTION: Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a “Jumping to Conclusions” probabilistic reasoning task. METHODS: We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages. RESULTS: Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices) all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information), while for prefrontal areas a wider multivariate pattern of activity was maximally informative. CONCLUSIONS/SIGNIFICANCE: We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable tool to assess how area-specific processing is altered in psychiatric disorders such as schizophrenia, and in healthy subjects carrying different genetic polymorphisms. Public Library of Science 2015-08-10 /pmc/articles/PMC4530897/ /pubmed/26258487 http://dx.doi.org/10.1371/journal.pone.0135424 Text en © 2015 Demanuele et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Demanuele, Charmaine Kirsch, Peter Esslinger, Christine Zink, Mathias Meyer-Lindenberg, Andreas Durstewitz, Daniel Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis |
title | Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis |
title_full | Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis |
title_fullStr | Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis |
title_full_unstemmed | Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis |
title_short | Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis |
title_sort | area-specific information processing in prefrontal cortex during a probabilistic inference task: a multivariate fmri bold time series analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530897/ https://www.ncbi.nlm.nih.gov/pubmed/26258487 http://dx.doi.org/10.1371/journal.pone.0135424 |
work_keys_str_mv | AT demanuelecharmaine areaspecificinformationprocessinginprefrontalcortexduringaprobabilisticinferencetaskamultivariatefmriboldtimeseriesanalysis AT kirschpeter areaspecificinformationprocessinginprefrontalcortexduringaprobabilisticinferencetaskamultivariatefmriboldtimeseriesanalysis AT esslingerchristine areaspecificinformationprocessinginprefrontalcortexduringaprobabilisticinferencetaskamultivariatefmriboldtimeseriesanalysis AT zinkmathias areaspecificinformationprocessinginprefrontalcortexduringaprobabilisticinferencetaskamultivariatefmriboldtimeseriesanalysis AT meyerlindenbergandreas areaspecificinformationprocessinginprefrontalcortexduringaprobabilisticinferencetaskamultivariatefmriboldtimeseriesanalysis AT durstewitzdaniel areaspecificinformationprocessinginprefrontalcortexduringaprobabilisticinferencetaskamultivariatefmriboldtimeseriesanalysis |