Cargando…

Celastrol induces apoptosis of human osteosarcoma cells via the mitochondrial apoptotic pathway

Celastrol is an active compound extracted from the root bark of Triptergium wilfordii Hook F., also known as 'Thunder of God Vine'. It is a well-known Chinese medicinal herb that was found to inhibit tumor cell growth and promote apoptosis in several tumor cell lines. However, research int...

Descripción completa

Detalles Bibliográficos
Autores principales: YU, XIAOLONG, ZHOU, XIN, FU, CHANGLIN, WANG, QIANG, NIE, TAO, ZOU, FAN, GUO, RUNSHENG, LIU, HUCHENG, ZHANG, BIN, DAI, MIN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530898/
https://www.ncbi.nlm.nih.gov/pubmed/26165547
http://dx.doi.org/10.3892/or.2015.4124
Descripción
Sumario:Celastrol is an active compound extracted from the root bark of Triptergium wilfordii Hook F., also known as 'Thunder of God Vine'. It is a well-known Chinese medicinal herb that was found to inhibit tumor cell growth and promote apoptosis in several tumor cell lines. However, research into its effects on osteosarcoma cell apoptosis is still extremely limited. The present study was undertaken to determine the effect of celastrol on viability and apoptosis of osteosarcoma cells and furthermore, to illuminate the molecular mechanism of celastrol-induced osteosarcoma cell apoptosis. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay was used to evaluate the viability of the cells following treatment with celastrol. The effect of celastrol on the apoptotic rate of the cells was evaluated by flow cytometry using Annexin V-PE/7-AAD staining assay. Fluorescence microscopy was used to detect the morphological changes in the human osteosarcoma U-2OS cell lines. The expression of Bcl-2 family proteins, caspase-3, caspase-8, caspase-9, cytochrome c and PARP was measured by western blotting. We found that celastrol significantly inhibited the growth of osteosarcoma cells in a dose-dependent manner, particularly U-2OS cells. Furthermore, we observed that celastrol upregulated the expression of the pro-apoptotic proteins Bax and cytochrome c and altered the ratio of Bax/Bcl-2, and triggered the mitochondrial apoptotic pathway, resulting in caspase-3 and -9 activation and PARP cleavage. To conclude, the results indicate that celastrol inhibits the proliferation of human osteosarcoma cancer cells by inducing apoptosis via the mitochondrial-dependent pathway.