Cargando…

HMPL: A Pipeline for Identifying Hemimethylation Patterns by Comparing Two Samples

DNA methylation (the addition of a methyl group to a cytosine) is an important epigenetic event in mammalian cells because it plays a key role in regulating gene expression. Most previous methylation studies assume that DNA methylation occurs on both positive and negative strands. However, a few stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Shuying, Li, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530977/
https://www.ncbi.nlm.nih.gov/pubmed/26308520
http://dx.doi.org/10.4137/CIN.S17286
Descripción
Sumario:DNA methylation (the addition of a methyl group to a cytosine) is an important epigenetic event in mammalian cells because it plays a key role in regulating gene expression. Most previous methylation studies assume that DNA methylation occurs on both positive and negative strands. However, a few studies have reported that in some genes, methylation occurs only on one strand (ie, hemimethylation) and has clustering patterns. These studies report that hemimethylation occurs on individual genes. It is unclear whether hemimethylation occurs genome-wide and whether there are hemimethylation differences between cancerous and noncancerous cells. To address these questions, we have developed the first-ever pipeline, named hemimethylation pipeline (HMPL), to identify hemimethylation patterns. Utilizing the available software and the newly developed Perl and R scripts, HMPL can identify hemimethylation patterns for a single sample and can also compare two different samples.