Cargando…
Predicting Metabolic Syndrome Using the Random Forest Method
Aims. This study proposes a computational method for determining the prevalence of metabolic syndrome (MS) and to predict its occurrence using the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criteria. The Random Forest (RF) method is also applied to identify signi...
Autores principales: | Worachartcheewan, Apilak, Shoombuatong, Watshara, Pidetcha, Phannee, Nopnithipat, Wuttichai, Prachayasittikul, Virapong, Nantasenamat, Chanin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531182/ https://www.ncbi.nlm.nih.gov/pubmed/26290899 http://dx.doi.org/10.1155/2015/581501 |
Ejemplares similares
-
Classification of P-glycoprotein-interacting compounds using machine learning methods
por: Prachayasittikul, Veda, et al.
Publicado: (2015) -
Data mining for the identification of metabolic syndrome status
por: Worachartcheewan, Apilak, et al.
Publicado: (2018) -
Prediction of aromatase inhibitory activity using the efficient linear method (ELM)
por: Shoombuatong, Watshara, et al.
Publicado: (2015) -
Quantitative population-health relationship (QPHR) for assessing metabolic syndrome
por: Worachartcheewan, Apilak, et al.
Publicado: (2013) -
ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides
por: Schaduangrat, Nalini, et al.
Publicado: (2019)