Cargando…
Effective artifact removal in resting state fMRI data improves detection of DMN functional connectivity alteration in Alzheimer's disease
Artifact removal from resting state fMRI data is an essential step for a better identification of the resting state networks and the evaluation of their functional connectivity (FC), especially in pathological conditions. There is growing interest in the development of cleaning procedures, especiall...
Autores principales: | Griffanti, Ludovica, Dipasquale, Ottavia, Laganà, Maria M., Nemni, Raffaello, Clerici, Mario, Smith, Stephen M., Baselli, Giuseppe, Baglio, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531245/ https://www.ncbi.nlm.nih.gov/pubmed/26321937 http://dx.doi.org/10.3389/fnhum.2015.00449 |
Ejemplares similares
-
High-Dimensional ICA Analysis Detects Within-Network Functional Connectivity Damage of Default-Mode and Sensory-Motor Networks in Alzheimer’s Disease
por: Dipasquale, Ottavia, et al.
Publicado: (2015) -
A Novel Approach of Groupwise fMRI-Guided Tractography Allowing to Characterize the Clinical Evolution of Alzheimer's Disease
por: Preti, Maria Giulia, et al.
Publicado: (2014) -
Assessing Corpus Callosum Changes in Alzheimer's Disease: Comparison between Tract-Based Spatial Statistics and Atlas-Based Tractography
por: Preti, Maria Giulia, et al.
Publicado: (2012) -
Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions
por: Dipasquale, Ottavia, et al.
Publicado: (2017) -
Theory of Mind and the Whole Brain Functional Connectivity: Behavioral and Neural Evidences with the Amsterdam Resting State Questionnaire
por: Marchetti, Antonella, et al.
Publicado: (2015)