Cargando…
How to develop a more accurate risk prediction model when there are few events
When the number of events is low relative to the number of predictors, standard regression could produce overfitted risk models that make inaccurate predictions. Use of penalised regression may improve the accuracy of risk prediction
Autores principales: | Pavlou, Menelaos, Ambler, Gareth, Seaman, Shaun R, Guttmann, Oliver, Elliott, Perry, King, Michael, Omar, Rumana Z |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group Ltd.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531311/ https://www.ncbi.nlm.nih.gov/pubmed/26264962 http://dx.doi.org/10.1136/bmj.h3868 |
Ejemplares similares
-
Review and evaluation of penalised regression methods for risk prediction in low‐dimensional data with few events
por: Pavlou, Menelaos, et al.
Publicado: (2015) -
A note on obtaining correct marginal predictions from a random intercepts model for binary outcomes
por: Pavlou, Menelaos, et al.
Publicado: (2015) -
Risk prediction in multicentre studies when there is confounding by cluster or informative cluster size
por: Pavlou, Menelaos, et al.
Publicado: (2021) -
Estimation of required sample size for external validation of risk
models for binary outcomes
por: Pavlou, Menelaos, et al.
Publicado: (2021) -
Methods for Observed-Cluster Inference When Cluster Size Is Informative: A Review and Clarifications
por: Seaman, Shaun R, et al.
Publicado: (2014)