Cargando…

Effects of Buthionine Sulfoximine Treatment on Cellular Glutathione Levels and Cytotoxicities of Cisplatin, Carboplatin and Radiation in Human Stomach and Ovarian Cancer Cell Lines(*): – Glutathione, Buthionine Sulfoximine, Cytotoxicity –

Chemotherapy failure remains a significant medical problem in the treatment of neoplastic disease and is thought to be due to many different factors including membrane transport, p-glycoprotein in multidrug resistance, glutathione and its related enzymes, topoisomerase II and DNA repair. Glutatione...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Kyung Shik, Kim, Hoon-Kyo, Moon, Hee Sook, Hong, Young Seon, Kang, Jin Hyung, Kim, Dong Jip, Park, Jae-Gahb
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Association of Internal Medicine 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532113/
https://www.ncbi.nlm.nih.gov/pubmed/1306072
http://dx.doi.org/10.3904/kjim.1992.7.2.111
Descripción
Sumario:Chemotherapy failure remains a significant medical problem in the treatment of neoplastic disease and is thought to be due to many different factors including membrane transport, p-glycoprotein in multidrug resistance, glutathione and its related enzymes, topoisomerase II and DNA repair. Glutatione is a major constituent of non-protein thiol and participates in detoxification of chemotherapy and radiation. Thus, glutathione concentration is correlated with sensitivity to alkylating agents and radiation, and increased in resistant cell lines. Buthionine sulfoximine (BSO) is an inhibitor of glutathione biosysthesis and may increase cytotoxicities of alkylating agents, including melphalan and cisplatin, and radiation in sensitive and resistant cell lines. We studied effects on cellular glutathione levels and cytotoxicites of cisplatin, carboplatin and radiation by BSO treatment in human stomach cancer cell line (SNU-1) and ovarian cancer cell line (OVCAR-3). 1).. After BSO treatment of 1 mM and 2 mM for 2 days, the intracellular thiol concentration was depleted to 75.7% and 76.2% in SNU-1, and 74.1% and 63.0% in OVCAR-3, respectively. 2).. The intracellular thiol concentration in SNU-1 was depleted to 33.4% after BSO 2 mM for only 2 hours incubation and 71.5% after small amount of BSO (0.02 mM) for 2 days. 3).. The recovery of intracellular thiol concentration required more than 3 days after BSO removal. 4).. BSO inhibited partially the growth of SNU-1 and OVCAR-3. 5).. The cytotoxicities of cisplatin and carboplatin were markedly enhanced both in SNU-1 and OVCAR-3 by BSO treatment. 6).. The cytotoxicities of radiation was inceased in OVCAR-3 and SNU-1 by BSO treatment. Therefore, it is concluded that BSO can deplete effectively the intracellular thiol concentration and enhance the cytotoxicities of cisplatin, carboplatin and radiation.