Cargando…

Landscapes for Energy and Wildlife: Conservation Prioritization for Golden Eagles across Large Spatial Scales

Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional...

Descripción completa

Detalles Bibliográficos
Autores principales: Tack, Jason D., Fedy, Bradley C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532434/
https://www.ncbi.nlm.nih.gov/pubmed/26262876
http://dx.doi.org/10.1371/journal.pone.0134781
Descripción
Sumario:Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.