Cargando…
Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the ‘Extreme Learning Machine’ Algorithm
Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates...
Autores principales: | McDonnell, Mark D., Tissera, Migel D., Vladusich, Tony, van Schaik, André, Tapson, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532447/ https://www.ncbi.nlm.nih.gov/pubmed/26262687 http://dx.doi.org/10.1371/journal.pone.0134254 |
Ejemplares similares
-
A Unified Account of Perceptual Layering and Surface Appearance in Terms of Gamut Relativity
por: Vladusich, Tony, et al.
Publicado: (2014) -
Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification
por: Pang, Shan, et al.
Publicado: (2016) -
Full depth CNN classifier for handwritten and license plate characters recognition
por: Salemdeeb, Mohammed, et al.
Publicado: (2021) -
Two-Stage Feature Generator for Handwritten Digit Classification
por: Gunler Pirim, M. Altinay, et al.
Publicado: (2023) -
Online Handwritten Signature Verification Using Neural Network Classifier Based on Principal Component Analysis
por: Iranmanesh, Vahab, et al.
Publicado: (2014)