Cargando…

Silver Nanorods Wrapped with Ultrathin Al(2)O(3) Layers Exhibiting Excellent SERS Sensitivity and Outstanding SERS Stability

Silver nanostructures have been considered as promising substrates for surface-enhanced Raman scattering (SERS) with extremely high sensitivity. The applications, however, are hindered by the facts that their morphology can be easily destroyed due to the low melting points (~100 °C) and their surfac...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Lingwei, Huang, Yu, Hou, Mengjing, Xie, Zheng, Zhang, Zhengjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533008/
https://www.ncbi.nlm.nih.gov/pubmed/26264281
http://dx.doi.org/10.1038/srep12890
Descripción
Sumario:Silver nanostructures have been considered as promising substrates for surface-enhanced Raman scattering (SERS) with extremely high sensitivity. The applications, however, are hindered by the facts that their morphology can be easily destroyed due to the low melting points (~100 °C) and their surfaces are readily oxidized/sulfured in air, thus losing the SERS activity. It was found that wrapping Ag nanorods with an ultrathin (~1.5 nm) but dense and amorphous Al(2)O(3) layer by low-temperature atomic layer deposition (ALD) could make the nanorods robust in morphology up to 400 °C, and passivate completely their surfaces to stabilize the SERS activity in air, without decreasing much the SERS sensitivity. This simple strategy holds great potentials to generate highly robust and stable SERS substrates for real applications.