Cargando…
Intra-Arterial Fluorescence Angiography with Injection of Fluorescein Sodium from the Superficial Temporal Artery during Aneurysm Surgery: Technical Notes
Intra-arterial fluorescence angiography from a catheter inserted into the external carotid artery (ECA) via the superficial temporal artery (STA) allowed us to satisfactorily evaluate cerebral arterial and venous blood flow. We report this novel method that allowed for repeated angiography within mi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Neurosurgical Society
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533452/ https://www.ncbi.nlm.nih.gov/pubmed/24477067 http://dx.doi.org/10.2176/nmc.tn.2013-0232 |
Sumario: | Intra-arterial fluorescence angiography from a catheter inserted into the external carotid artery (ECA) via the superficial temporal artery (STA) allowed us to satisfactorily evaluate cerebral arterial and venous blood flow. We report this novel method that allowed for repeated angiography within minutes with a low risk of complications due to catheter placement from the STA. The STA was secured at the edge of the standard skin incision during cerebral aneurysm surgery. A 3 Fr catheter was inserted approximately 5 cm to 10 cm into the STA. After manual injection of 5 ml of 20 times diluted 10% fluorescein sodium (fluorescein), fluorescein reached the intracranial internal carotid artery (ICA) through the common carotid artery or anastomoses between the ECA and ICA. Fluorescence emission from the cerebral arteries, capillaries, and veins was clearly observed through the microscope and results were recorded. Quick dye clearance makes it possible to reexamine within 1 minute. In addition, we made a graph of the fluorescence emission intensity in the arteries, capillaries, and veins using fluorescence analysis software. With intravenous fluorescence angiography, dye remains in the vessels for a long time. When repeated examinations are necessary, intervals of approximately 10 minutes are required. There were some cases we could not correctly evaluate with intravenous injection due to weak fluorescence emission. Fluorescence angiography with intra-arterial injection from a catheter inserted into the carotid artery or another major vessel, like conventional angiography, has a risk of procedure-related complications. We report our new method since it solved these problems and is useful. |
---|