Cargando…
Changes in fatty acid composition in tissue and serum of obese cats fed a high fat diet
BACKGROUND: Obesity and overweight have been frequently observed in dogs and cats in recent years as in humans. The compositions of fatty acids (FAs) in the accumulated lipids in tissues of obese animals may have important roles in the process and mechanisms related to the onset of metabolic disorde...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534048/ https://www.ncbi.nlm.nih.gov/pubmed/26268360 http://dx.doi.org/10.1186/s12917-015-0519-1 |
Sumario: | BACKGROUND: Obesity and overweight have been frequently observed in dogs and cats in recent years as in humans. The compositions of fatty acids (FAs) in the accumulated lipids in tissues of obese animals may have important roles in the process and mechanisms related to the onset of metabolic disorders. The purpose of this study was to evaluate the effects of a high fat (HF) diet, which contained a higher proportion of saturated FAs, on FA metabolism and distribution in obese cats. Cats (N = 12) were divided into control diet group (crude fat; 16.0 %) (n = 4) or a high fat (HF) diet group (crude fat; 23.9 %) (n = 8). The HF diet contained up to 60 % of calories from fat and was rich in stearic acid. Blood samples were collected at 0, 2, 4 and 6 weeks after the feeding. Adipose and liver tissues were collected at the 6(th) week after feeding. We performed analysis of histological findings and fatty acid composition in serum and tissues. RESULTS: Body weights of the cats significantly increased in the HF group. The increased activities of hepatic enzymes and the accumulation of lipid droplets were found in hepatocytes in the HF group at the 6(th) week after feeding. In this study, the stearic acid (C18:0)-rich HF diet contained less oleic acid (C18:1n-9) and more linoleic acid (C18:2n-6) than the control. However, the composition of oleic acid in the liver was higher, and those of stearic acid and linoleic acid were lower in the HF group at the 6(th) week after feeding. The higher oleic acid:stearic acid ratio suggests an increase in the conversion from saturated FA to mono-unsaturated FAs, which may reflect the hepatic storage of FAs as a relatively harmless form. CONCLUSION: The stearic acid-rich HF diet increased hepatic lipid accumulation accompanied by the increased of hepatic oleic acid, increased serum oleic acid and activation of hepatic enzymes. These findings could be an important sign of early stages of dyslipidemia and hepatic damage. Also, the higher oleic acid:stearic acid ratio might be related to the increased activity of SCD-1, which suggests that the stearic acid-rich HF diet evoked hepatic lipogenesis in the feline liver. |
---|