Cargando…
Item Anomaly Detection Based on Dynamic Partition for Time Series in Recommender Systems
In recent years, recommender systems have become an effective method to process information overload. However, recommendation technology still suffers from many problems. One of the problems is shilling attacks-attackers inject spam user profiles to disturb the list of recommendation items. There ar...
Autores principales: | Gao, Min, Tian, Renli, Wen, Junhao, Xiong, Qingyu, Ling, Bin, Yang, Linda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534203/ https://www.ncbi.nlm.nih.gov/pubmed/26267477 http://dx.doi.org/10.1371/journal.pone.0135155 |
Ejemplares similares
-
Detection of Abnormal Item Based on Time Intervals for Recommender Systems
por: Gao, Min, et al.
Publicado: (2014) -
Shilling Attacks Detection in Recommender Systems Based on Target Item Analysis
por: Zhou, Wei, et al.
Publicado: (2015) -
Disentangled Dynamic Deviation Transformer Networks for Multivariate Time Series Anomaly Detection
por: Wang, Chunzhi, et al.
Publicado: (2023) -
Shilling attack detection for recommender systems based on credibility of group users and rating time series
por: Zhou, Wei, et al.
Publicado: (2018) -
Anomaly detection for monitoring: a statistical approach to time series anomaly detection
por: Jinka, Preetam, et al.
Publicado: (2015)