Cargando…
Robust Gene-Gene Interaction Analysis in Genome Wide Association Studies
Genome-wide association studies (GWAS) have successfully discovered hundreds of associations between genetic variants and complex traits. Most GWAS have focused on the identification of single variants. It has been shown that most of the variants that were discovered by GWAS could only partially exp...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534386/ https://www.ncbi.nlm.nih.gov/pubmed/26267341 http://dx.doi.org/10.1371/journal.pone.0135016 |
_version_ | 1782385443100164096 |
---|---|
author | Kim, Yongkang Park, Taesung |
author_facet | Kim, Yongkang Park, Taesung |
author_sort | Kim, Yongkang |
collection | PubMed |
description | Genome-wide association studies (GWAS) have successfully discovered hundreds of associations between genetic variants and complex traits. Most GWAS have focused on the identification of single variants. It has been shown that most of the variants that were discovered by GWAS could only partially explain disease heritability. The explanation for this missing heritability is generally believed to be gene-gene (GG) or gene-environment (GE) interactions and other structural variants. Generalized multifactor dimensionality reduction (GMDR) has been proven to be reasonably powerful in detecting GG and GE interactions; however, its performance has been found to decline when outlying quantitative traits are present. This paper proposes a robust GMDR estimation method (based on the L-estimator and M-estimator estimation methods) in an attempt to reduce the effects caused by outlying traits. A comparison of robust GMDR with the original MDR based on simulation studies showed the former method to outperform the latter. The performance of robust GMDR is illustrated through a real GWA example consisting of 8,577 samples from the Korean population using the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) level as a phenotype. Robust GMDR identified the KCNH1 gene to have strong interaction effects with other genes on the function of insulin secretion. |
format | Online Article Text |
id | pubmed-4534386 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45343862015-08-24 Robust Gene-Gene Interaction Analysis in Genome Wide Association Studies Kim, Yongkang Park, Taesung PLoS One Research Article Genome-wide association studies (GWAS) have successfully discovered hundreds of associations between genetic variants and complex traits. Most GWAS have focused on the identification of single variants. It has been shown that most of the variants that were discovered by GWAS could only partially explain disease heritability. The explanation for this missing heritability is generally believed to be gene-gene (GG) or gene-environment (GE) interactions and other structural variants. Generalized multifactor dimensionality reduction (GMDR) has been proven to be reasonably powerful in detecting GG and GE interactions; however, its performance has been found to decline when outlying quantitative traits are present. This paper proposes a robust GMDR estimation method (based on the L-estimator and M-estimator estimation methods) in an attempt to reduce the effects caused by outlying traits. A comparison of robust GMDR with the original MDR based on simulation studies showed the former method to outperform the latter. The performance of robust GMDR is illustrated through a real GWA example consisting of 8,577 samples from the Korean population using the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) level as a phenotype. Robust GMDR identified the KCNH1 gene to have strong interaction effects with other genes on the function of insulin secretion. Public Library of Science 2015-08-12 /pmc/articles/PMC4534386/ /pubmed/26267341 http://dx.doi.org/10.1371/journal.pone.0135016 Text en © 2015 Kim, Park http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kim, Yongkang Park, Taesung Robust Gene-Gene Interaction Analysis in Genome Wide Association Studies |
title | Robust Gene-Gene Interaction Analysis in Genome Wide Association Studies |
title_full | Robust Gene-Gene Interaction Analysis in Genome Wide Association Studies |
title_fullStr | Robust Gene-Gene Interaction Analysis in Genome Wide Association Studies |
title_full_unstemmed | Robust Gene-Gene Interaction Analysis in Genome Wide Association Studies |
title_short | Robust Gene-Gene Interaction Analysis in Genome Wide Association Studies |
title_sort | robust gene-gene interaction analysis in genome wide association studies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534386/ https://www.ncbi.nlm.nih.gov/pubmed/26267341 http://dx.doi.org/10.1371/journal.pone.0135016 |
work_keys_str_mv | AT kimyongkang robustgenegeneinteractionanalysisingenomewideassociationstudies AT parktaesung robustgenegeneinteractionanalysisingenomewideassociationstudies |