Cargando…
Induction of Neural Progenitor-Like Cells from Human Fibroblasts via a Genetic Material-Free Approach
BACKGROUND: A number of studies generated induced neural progenitor cells (iNPCs) from human fibroblasts by viral delivering defined transcription factors. However, the potential risks associated with gene delivery systems have limited their clinical use. We propose it would be safer to induce neura...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534403/ https://www.ncbi.nlm.nih.gov/pubmed/26266943 http://dx.doi.org/10.1371/journal.pone.0135479 |
Sumario: | BACKGROUND: A number of studies generated induced neural progenitor cells (iNPCs) from human fibroblasts by viral delivering defined transcription factors. However, the potential risks associated with gene delivery systems have limited their clinical use. We propose it would be safer to induce neural progenitor-like cells from human adult fibroblasts via a direct non-genetic alternative approach. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have reported that seven rounds of TAT-SOX2 protein transduction in a defined chemical cocktail under a 3D sphere culture gradually morphed fibroblasts into neuroepithelial-like colonies. We were able to expand these cells for up to 20 passages. These cells could give rise to cells that expressed neurons and glia cell markers both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: These results show that our approach is beneficial for the genetic material-free generation of iNPCs from human fibroblasts where small chemical molecules can provide a valuable, viable strategy to boost and improve induction in a 3D sphere culture. |
---|