Cargando…
Carry-over coarticulation in joint angles
Coarticulation indicates a dependence of a movement segment on a preceding segment (carry-over coarticulation) or on the segment that follows (anticipatory coarticulation). Here we study coarticulation in multidegrees of freedom human arm movements. We asked participants to transport a cylinder from...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534489/ https://www.ncbi.nlm.nih.gov/pubmed/26003130 http://dx.doi.org/10.1007/s00221-015-4327-4 |
_version_ | 1782385464340119552 |
---|---|
author | Hansen, Eva Grimme, Britta Reimann, Hendrik Schöner, Gregor |
author_facet | Hansen, Eva Grimme, Britta Reimann, Hendrik Schöner, Gregor |
author_sort | Hansen, Eva |
collection | PubMed |
description | Coarticulation indicates a dependence of a movement segment on a preceding segment (carry-over coarticulation) or on the segment that follows (anticipatory coarticulation). Here we study coarticulation in multidegrees of freedom human arm movements. We asked participants to transport a cylinder from a starting position to a center target and on to a final target. In this naturalistic setting, the human arm has ten degrees of freedom and is thus comfortably redundant for the task. We studied coarticulation by comparing movements between the same spatial locations that were either preceded by different end-effector paths (carry-over coarticulation) or followed by different end-effector paths (anticipatory coarticulation). We found no evidence for coarticulation at the level of the end-effector. We found very clear evidence, however, for carry-over, not for anticipatory coarticulation at the joint level. We used the concept of the uncontrolled manifold to systematically establish coarticulation as a form of motor equivalence, in which most of the difference between different movement contexts lies within the uncontrolled manifold that leaves the end-effector invariant. The findings are consistent with movement planning occurring at the level of the end-effector, and those movement plans being transformed to the joint level by a form of inverse kinematics. The observation of massive self-motion excludes an account that is solely based on a kinematic pseudo-inverse. |
format | Online Article Text |
id | pubmed-4534489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-45344892015-08-20 Carry-over coarticulation in joint angles Hansen, Eva Grimme, Britta Reimann, Hendrik Schöner, Gregor Exp Brain Res Research Article Coarticulation indicates a dependence of a movement segment on a preceding segment (carry-over coarticulation) or on the segment that follows (anticipatory coarticulation). Here we study coarticulation in multidegrees of freedom human arm movements. We asked participants to transport a cylinder from a starting position to a center target and on to a final target. In this naturalistic setting, the human arm has ten degrees of freedom and is thus comfortably redundant for the task. We studied coarticulation by comparing movements between the same spatial locations that were either preceded by different end-effector paths (carry-over coarticulation) or followed by different end-effector paths (anticipatory coarticulation). We found no evidence for coarticulation at the level of the end-effector. We found very clear evidence, however, for carry-over, not for anticipatory coarticulation at the joint level. We used the concept of the uncontrolled manifold to systematically establish coarticulation as a form of motor equivalence, in which most of the difference between different movement contexts lies within the uncontrolled manifold that leaves the end-effector invariant. The findings are consistent with movement planning occurring at the level of the end-effector, and those movement plans being transformed to the joint level by a form of inverse kinematics. The observation of massive self-motion excludes an account that is solely based on a kinematic pseudo-inverse. Springer Berlin Heidelberg 2015-05-24 2015 /pmc/articles/PMC4534489/ /pubmed/26003130 http://dx.doi.org/10.1007/s00221-015-4327-4 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Article Hansen, Eva Grimme, Britta Reimann, Hendrik Schöner, Gregor Carry-over coarticulation in joint angles |
title | Carry-over coarticulation in joint angles |
title_full | Carry-over coarticulation in joint angles |
title_fullStr | Carry-over coarticulation in joint angles |
title_full_unstemmed | Carry-over coarticulation in joint angles |
title_short | Carry-over coarticulation in joint angles |
title_sort | carry-over coarticulation in joint angles |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534489/ https://www.ncbi.nlm.nih.gov/pubmed/26003130 http://dx.doi.org/10.1007/s00221-015-4327-4 |
work_keys_str_mv | AT hanseneva carryovercoarticulationinjointangles AT grimmebritta carryovercoarticulationinjointangles AT reimannhendrik carryovercoarticulationinjointangles AT schonergregor carryovercoarticulationinjointangles |