Cargando…

Nutrition-dependent phenotypes affect sexual selection in a ladybird

Environmental factors play a crucial role in influencing sexual selection in insects and the evolution of their mating systems. Although it has been reported that sexual selection in insects may change in response to varying environments, the reason for these changes remains poorly understood. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Jiaqin, De Clercq, Patrick, Zhang, Yuhong, Wu, Hongsheng, Pan, Chang, Pang, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534764/
https://www.ncbi.nlm.nih.gov/pubmed/26269214
http://dx.doi.org/10.1038/srep13111
Descripción
Sumario:Environmental factors play a crucial role in influencing sexual selection in insects and the evolution of their mating systems. Although it has been reported that sexual selection in insects may change in response to varying environments, the reason for these changes remains poorly understood. Here, we focus on the mate selection process of a ladybird, Cryptolaemus montrouzieri, when experiencing low- and high-nutrition diet regimes both in its larval and adult stages. We found that female ladybirds preferred to mate with males reared under high-nutrition diet regimes, regardless of the nutritional conditions they experienced during their own larval stages, indicating that mate choice of female C. montrouzieri is non-random and phenotype-dependent. Such mate choice may depend on visual cues (body or genitalia size) and/or chemical cues (pheromones). Further, females from high-nutrition larval diet regimes produced more eggs than those from low-nutrition larval diet regimes. In addition, diet regimes during adulthood also exerted strong effects on egg production. In summary, our study provides new insight into the mate choice of C. montrouzieri as affected by seasonal changes in resources, and suggests that food availability may be a driving force in mate choice.