Cargando…

Spontaneous neurotransmission signals through store-driven Ca(2+) transients to maintain synaptic homeostasis

Spontaneous glutamate release-driven NMDA receptor activity exerts a strong influence on synaptic homeostasis. However, the properties of Ca(2+) signals that mediate this effect remain unclear. Here, using hippocampal neurons labeled with the fluorescent Ca(2+) probes Fluo-4 or GCAMP5, we visualized...

Descripción completa

Detalles Bibliográficos
Autores principales: Reese, Austin L, Kavalali, Ege T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534843/
https://www.ncbi.nlm.nih.gov/pubmed/26208337
http://dx.doi.org/10.7554/eLife.09262
Descripción
Sumario:Spontaneous glutamate release-driven NMDA receptor activity exerts a strong influence on synaptic homeostasis. However, the properties of Ca(2+) signals that mediate this effect remain unclear. Here, using hippocampal neurons labeled with the fluorescent Ca(2+) probes Fluo-4 or GCAMP5, we visualized action potential-independent Ca(2+) transients in dendritic regions adjacent to fluorescently labeled presynaptic boutons in physiological levels of extracellular Mg(2+). These Ca(2+) transients required NMDA receptor activity, and their propensity correlated with acute or genetically induced changes in spontaneous neurotransmitter release. In contrast, they were insensitive to blockers of AMPA receptors, L-type voltage-gated Ca(2+) channels, or group I mGluRs. However, inhibition of Ca(2+)-induced Ca(2+) release suppressed these transients and elicited synaptic scaling, a process which required protein translation and eukaryotic elongation factor-2 kinase activity. These results support a critical role for Ca(2+)-induced Ca(2+) release in amplifying NMDA receptor-driven Ca(2+) signals at rest for the maintenance of synaptic homeostasis. DOI: http://dx.doi.org/10.7554/eLife.09262.001