Cargando…

No neuropathological evidence for a direct topographical relation between microbleeds and cerebral amyloid angiopathy

INTRODUCTION: Cerebral microbleeds correspond to blood breakdown products, including hemosiderin-containing macrophages around small vessels on histological examination. Superficial lobar cerebral microbleeds are increasingly recognized on MRI as a biomarker of cerebral amyloid angiopathy but the di...

Descripción completa

Detalles Bibliográficos
Autores principales: Kövari, Enikö, Charidimou, Andreas, Herrmann, François R., Giannakopoulos, Panteleimon, Bouras, Constantin, Gold, Gabriel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535376/
https://www.ncbi.nlm.nih.gov/pubmed/26268348
http://dx.doi.org/10.1186/s40478-015-0228-9
Descripción
Sumario:INTRODUCTION: Cerebral microbleeds correspond to blood breakdown products, including hemosiderin-containing macrophages around small vessels on histological examination. Superficial lobar cerebral microbleeds are increasingly recognized on MRI as a biomarker of cerebral amyloid angiopathy but the direct association between amyloid-laden vessels burden and cerebral microbleeds has yet to be validated neuropathologically. To address this issue, we examined the frequency of histopathologically-defined cerebral microbleeds in different brain regions and their relationship with cerebral amyloid angiopathy in a large autopsy population. RESULTS: The frontal, parietal and occipital cortex as well as the adjacent white matter and basal ganglia of 113 consecutive autopsies were examined. Cerebral microbleedss were identified on haematoxylin-eosin-stained histological slides, cerebral amyloid angiopathy using anti-amyloid antibody. Cerebral microbleeds were present in 92.9 % of the cases and cerebral amyloid angiopathy in 44.3 % of them. Cerebral microbleeds were more frequent in parietal and frontal lobes followed by the occipital region and basal ganglia. In contrast, cerebral amyloid angiopathy was most frequent in the occipital lobe. There was no significant topographical association between cerebral amyloid angiopathy presence or severity and cerebral microbleeds in any brain region. In lobar areas, cerebral amyloid angiopathy was found in the cortex, predominantly affecting pial arteries and their superficial cortical branches, in contrast to microbleeds which were mainly in the white matter and occurred around deeper arteries and arterioles, including the subcortical segment of long penetrating branches of pial vessels. CONCLUSIONS: Our study does not support a direct relation between cerebral microbleeds and cerebral amyloid angiopathy burden at the neuropathological level, raising intriguing questions on the potential pathophysiological mechanisms of cerebral microbleeds in the context of cerebral amyloid angiopathy or other small vessel disease pathology.