Cargando…

Rapid growth accelerates telomere attrition in a transgenic fish

BACKGROUND: Individuals rarely grow as fast as their physiologies permit despite the fitness advantages of being large. One reason may be that rapid growth is costly, resulting for example in somatic damage. The chromosomal ends, the telomeres, are particularly vulnerable to such damage, and telomer...

Descripción completa

Detalles Bibliográficos
Autores principales: Pauliny, Angela, Devlin, Robert H., Johnsson, Jörgen I., Blomqvist, Donald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535669/
https://www.ncbi.nlm.nih.gov/pubmed/26268318
http://dx.doi.org/10.1186/s12862-015-0436-8
Descripción
Sumario:BACKGROUND: Individuals rarely grow as fast as their physiologies permit despite the fitness advantages of being large. One reason may be that rapid growth is costly, resulting for example in somatic damage. The chromosomal ends, the telomeres, are particularly vulnerable to such damage, and telomere attrition thus influences the rate of ageing. Here, we used a transgenic salmon model with an artificially increased growth rate to test the hypothesis that rapid growth is traded off against the ability to maintain somatic health, assessed as telomere attrition. RESULTS: We found substantial telomere attrition in transgenic fish, while maternal half-sibs growing at a lower, wild-type rate seemed better able to maintain the length of their telomeres during the same time period. CONCLUSIONS: Our results are consistent with a trade-off between rapid growth and somatic (telomere) maintenance in growth-manipulated fish. Since telomere erosion reflects cellular ageing, our findings also support theories of ageing postulating that unrepaired somatic damage is associated with senescence. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0436-8) contains supplementary material, which is available to authorized users.