Cargando…
Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging
BACKGROUND: Segmentation of pre-operative low-grade gliomas (LGGs) from magnetic resonance imaging is a crucial step for studying imaging biomarkers. However, segmentation of LGGs is particularly challenging because they rarely enhance after gadolinium administration. Like other gliomas, they have i...
Autores principales: | Akkus, Zeynettin, Sedlar, Jiri, Coufalova, Lucie, Korfiatis, Panagiotis, Kline, Timothy L., Warner, Joshua D., Agrawal, Jay, Erickson, Bradley J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535671/ https://www.ncbi.nlm.nih.gov/pubmed/26268363 http://dx.doi.org/10.1186/s40644-015-0047-z |
Ejemplares similares
-
Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence
por: Akkus, Zeynettin, et al.
Publicado: (2017) -
Toolkits and Libraries for Deep Learning
por: Erickson, Bradley J., et al.
Publicado: (2017) -
Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning
por: Korfiatis, Panagiotis, et al.
Publicado: (2016) -
Deep Learning in Radiology: Does One Size Fit All?
por: Erickson, Bradley J., et al.
Publicado: (2018) -
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
por: Korfiatis, Panagiotis, et al.
Publicado: (2016)