Cargando…
Using Dynamic Multi-Task Non-Negative Matrix Factorization to Detect the Evolution of User Preferences in Collaborative Filtering
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper,...
Autores principales: | Ju, Bin, Qian, Yuntao, Ye, Minchao, Ni, Rong, Zhu, Chenxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535854/ https://www.ncbi.nlm.nih.gov/pubmed/26270539 http://dx.doi.org/10.1371/journal.pone.0135090 |
Ejemplares similares
-
Correction: Using Dynamic Multi-Task Non-Negative Matrix Factorization to Detect the Evolution of User Preferences in Collaborative Filtering
por: Ju, Bin, et al.
Publicado: (2015) -
Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems
por: Ayub, Mubbashir, et al.
Publicado: (2019) -
Collaborative Filtering Recommendation on Users’ Interest Sequences
por: Cheng, Weijie, et al.
Publicado: (2016) -
Users' Rating Predictions Using Collaborating Filtering Based on Users and Items Similarity Measures
por: Nudrat, Sofia, et al.
Publicado: (2022) -
The filter of choice: filtration method preference among injecting drug users
por: Keijzer, Lenneke, et al.
Publicado: (2011)