Cargando…
Control of dataset bias in combined Affymetrix cohorts of triple negative breast cancer
Heterogenous subtypes of breast cancer need to be analyzed separately. Pooling of datasets can provide reasonable sample sizes but dataset bias is an important concern. We assembled a combined dataset of 579 Affymetrix microarrays from triple negative breast cancer (TNBC) in Gene Expression Omnibus...
Autores principales: | Karn, Thomas, Rody, Achim, Müller, Volkmar, Schmidt, Marcus, Becker, Sven, Holtrich, Uwe, Pusztai, Lajos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535974/ https://www.ncbi.nlm.nih.gov/pubmed/26484129 http://dx.doi.org/10.1016/j.gdata.2014.09.014 |
Ejemplares similares
-
Homogeneous Datasets of Triple Negative Breast Cancers Enable the Identification of Novel Prognostic and Predictive Signatures
por: Karn, Thomas, et al.
Publicado: (2011) -
A clinically relevant gene signature in triple negative and basal-like breast cancer
por: Rody, Achim, et al.
Publicado: (2011) -
Proliferation and estrogen signaling can distinguish patients at risk for early versus late relapse among estrogen receptor positive breast cancers
por: Bianchini, Giampaolo, et al.
Publicado: (2013) -
T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers
por: Rody, Achim, et al.
Publicado: (2009) -
Molecular differences between younger versus older ER-positive and HER2-negative breast cancers
por: Qing, Tao, et al.
Publicado: (2022)