Cargando…

Transmitting information of an object behind the obstacle to infinity

We propose an illusion device that transforms a metallic cylinder into a Luneburg lens by using transformation optics. Such a transformed focusing lens guides electromagnetic waves to propagate around the central metallic cylinder smoothly and be focused on one spot, and thus the information of an o...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Bai Bing, Jiang, Wei Xiang, Meng, Ling Ling, Cui, Tie Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536636/
https://www.ncbi.nlm.nih.gov/pubmed/26272748
http://dx.doi.org/10.1038/srep13140
Descripción
Sumario:We propose an illusion device that transforms a metallic cylinder into a Luneburg lens by using transformation optics. Such a transformed focusing lens guides electromagnetic waves to propagate around the central metallic cylinder smoothly and be focused on one spot, and thus the information of an object behind the obstacle can be transmitted to infinity. In order to realize the required-anisotropic parameters with high permittivity and low permeability, we design embedded split-ring resonators (SRRs) to increase the permittivity of the traditional SRR structures. In experiments, we fabricate and measure the transformed lens, and the tested results agree well with the numerical simulations and theoretical predictions. The proposed transformation lens can mimic some properties of Einstein gravitational lens because their wave propagation behaviors are very similar.